Investigating microstructure evolution in block copolymer membranes
Block copolymer self-assembly in conjunction with nonsolvent-induced phase separation (SNIPS) has been increasingly leveraged to fabricate integral-asymmetric membranes. The large number of formulation and processing parameters associated with SNIPS, however, has prevented the reliable construction...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2024-02, Vol.160 (7) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | The Journal of chemical physics |
container_volume | 160 |
creator | Cooper, Anthony J. Grzetic, Douglas J. Delaney, Kris T. Fredrickson, Glenn H. |
description | Block copolymer self-assembly in conjunction with nonsolvent-induced phase separation (SNIPS) has been increasingly leveraged to fabricate integral-asymmetric membranes. The large number of formulation and processing parameters associated with SNIPS, however, has prevented the reliable construction of high performance membranes. In this study, we apply dynamical self-consistent field theory to model the SNIPS process and investigate the effect of various parameters on the membrane morphology: solvent selectivity, nonsolvent selectivity, initial film composition, and glass transition composition. We examine how solvent selectivity and concentration of polymers in the film impact the structure of micelles that connect to form the membrane matrix. In particular, we find that preserving the order in the surface layer and forming a connection between the supporting and surface layer are nontrivial and sensitive to each parameter studied. The effect of each parameter is discussed, and suggestions are made for successfully fabricating viable block copolymer membranes. |
doi_str_mv | 10.1063/5.0188196 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0188196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2929257859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-64b9d7cebc645978cd3e3d0d4ca36da7384f201d56198db1871babb6b1c56f333</originalsourceid><addsrcrecordid>eNp90DtPwzAUBWALgWgpDPwBFMECSCnXceLHiCpeUiUWmK3YccGQxMVOkPrvcUhhYGDy8un43IPQMYY5BkquijlgzrGgO2iKgYuUUQG7aAqQ4VRQoBN0EMIbAGCW5ftoQjjhwHI6RYuH9tOEzr6UnW1fksZq70Lne9313iTm09V9Z12b2DZRtdPviXZrV28a45PGNMqXrQmHaG9V1sEcbd8Zer69eVrcp8vHu4fF9TLVhEGX0lyJimmjNM0LwbiuiCEVVLkuCa1KRni-ygBXBcWCVwpzhlWpFFVYF3RFCJmh0zE3NrQyaNsZ_apd2xrdySz-AWJA5yNae_fRx9NkY4M2dR2buj7ITGSiyCHjONKzP_TN9b6NJ3yrrGC8EFFdjGpYJnizkmtvm9JvJAY5zC8LuZ0_2pNtYq8aU_3Kn70juBzB0L4clv0n7QsHY4wD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929257859</pqid></control><display><type>article</type><title>Investigating microstructure evolution in block copolymer membranes</title><source>AIP Journals Complete</source><creator>Cooper, Anthony J. ; Grzetic, Douglas J. ; Delaney, Kris T. ; Fredrickson, Glenn H.</creator><creatorcontrib>Cooper, Anthony J. ; Grzetic, Douglas J. ; Delaney, Kris T. ; Fredrickson, Glenn H. ; Univ. of California, Santa Barbara, CA (United States)</creatorcontrib><description>Block copolymer self-assembly in conjunction with nonsolvent-induced phase separation (SNIPS) has been increasingly leveraged to fabricate integral-asymmetric membranes. The large number of formulation and processing parameters associated with SNIPS, however, has prevented the reliable construction of high performance membranes. In this study, we apply dynamical self-consistent field theory to model the SNIPS process and investigate the effect of various parameters on the membrane morphology: solvent selectivity, nonsolvent selectivity, initial film composition, and glass transition composition. We examine how solvent selectivity and concentration of polymers in the film impact the structure of micelles that connect to form the membrane matrix. In particular, we find that preserving the order in the surface layer and forming a connection between the supporting and surface layer are nontrivial and sensitive to each parameter studied. The effect of each parameter is discussed, and suggestions are made for successfully fabricating viable block copolymer membranes.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0188196</identifier><identifier>PMID: 38380746</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Block copolymer ; Block copolymers ; Composition ; Field theory ; Glass transition ; Glass transitions ; Glassy dynamics ; Mass transfer ; MATERIALS SCIENCE ; Mean field theory ; Membrane technology ; Membranes ; Micelles ; Parameter sensitivity ; Phase separation ; Polymers ; Process parameters ; Random phase approximation ; Self consistent fields ; Self-assembly ; Solvents ; Surface layers ; Thermal fluctuations ; Thin films</subject><ispartof>The Journal of chemical physics, 2024-02, Vol.160 (7)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c370t-64b9d7cebc645978cd3e3d0d4ca36da7384f201d56198db1871babb6b1c56f333</cites><orcidid>0000-0002-6716-9017 ; 0000-0001-9808-0739 ; 0000-0003-0356-1391 ; 0000-0002-5185-6920 ; 0000000303561391 ; 0000000267169017 ; 0000000251856920 ; 0000000198080739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0188196$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38380746$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2370093$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cooper, Anthony J.</creatorcontrib><creatorcontrib>Grzetic, Douglas J.</creatorcontrib><creatorcontrib>Delaney, Kris T.</creatorcontrib><creatorcontrib>Fredrickson, Glenn H.</creatorcontrib><creatorcontrib>Univ. of California, Santa Barbara, CA (United States)</creatorcontrib><title>Investigating microstructure evolution in block copolymer membranes</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Block copolymer self-assembly in conjunction with nonsolvent-induced phase separation (SNIPS) has been increasingly leveraged to fabricate integral-asymmetric membranes. The large number of formulation and processing parameters associated with SNIPS, however, has prevented the reliable construction of high performance membranes. In this study, we apply dynamical self-consistent field theory to model the SNIPS process and investigate the effect of various parameters on the membrane morphology: solvent selectivity, nonsolvent selectivity, initial film composition, and glass transition composition. We examine how solvent selectivity and concentration of polymers in the film impact the structure of micelles that connect to form the membrane matrix. In particular, we find that preserving the order in the surface layer and forming a connection between the supporting and surface layer are nontrivial and sensitive to each parameter studied. The effect of each parameter is discussed, and suggestions are made for successfully fabricating viable block copolymer membranes.</description><subject>Block copolymer</subject><subject>Block copolymers</subject><subject>Composition</subject><subject>Field theory</subject><subject>Glass transition</subject><subject>Glass transitions</subject><subject>Glassy dynamics</subject><subject>Mass transfer</subject><subject>MATERIALS SCIENCE</subject><subject>Mean field theory</subject><subject>Membrane technology</subject><subject>Membranes</subject><subject>Micelles</subject><subject>Parameter sensitivity</subject><subject>Phase separation</subject><subject>Polymers</subject><subject>Process parameters</subject><subject>Random phase approximation</subject><subject>Self consistent fields</subject><subject>Self-assembly</subject><subject>Solvents</subject><subject>Surface layers</subject><subject>Thermal fluctuations</subject><subject>Thin films</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90DtPwzAUBWALgWgpDPwBFMECSCnXceLHiCpeUiUWmK3YccGQxMVOkPrvcUhhYGDy8un43IPQMYY5BkquijlgzrGgO2iKgYuUUQG7aAqQ4VRQoBN0EMIbAGCW5ftoQjjhwHI6RYuH9tOEzr6UnW1fksZq70Lne9313iTm09V9Z12b2DZRtdPviXZrV28a45PGNMqXrQmHaG9V1sEcbd8Zer69eVrcp8vHu4fF9TLVhEGX0lyJimmjNM0LwbiuiCEVVLkuCa1KRni-ygBXBcWCVwpzhlWpFFVYF3RFCJmh0zE3NrQyaNsZ_apd2xrdySz-AWJA5yNae_fRx9NkY4M2dR2buj7ITGSiyCHjONKzP_TN9b6NJ3yrrGC8EFFdjGpYJnizkmtvm9JvJAY5zC8LuZ0_2pNtYq8aU_3Kn70juBzB0L4clv0n7QsHY4wD</recordid><startdate>20240221</startdate><enddate>20240221</enddate><creator>Cooper, Anthony J.</creator><creator>Grzetic, Douglas J.</creator><creator>Delaney, Kris T.</creator><creator>Fredrickson, Glenn H.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6716-9017</orcidid><orcidid>https://orcid.org/0000-0001-9808-0739</orcidid><orcidid>https://orcid.org/0000-0003-0356-1391</orcidid><orcidid>https://orcid.org/0000-0002-5185-6920</orcidid><orcidid>https://orcid.org/0000000303561391</orcidid><orcidid>https://orcid.org/0000000267169017</orcidid><orcidid>https://orcid.org/0000000251856920</orcidid><orcidid>https://orcid.org/0000000198080739</orcidid></search><sort><creationdate>20240221</creationdate><title>Investigating microstructure evolution in block copolymer membranes</title><author>Cooper, Anthony J. ; Grzetic, Douglas J. ; Delaney, Kris T. ; Fredrickson, Glenn H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-64b9d7cebc645978cd3e3d0d4ca36da7384f201d56198db1871babb6b1c56f333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Block copolymer</topic><topic>Block copolymers</topic><topic>Composition</topic><topic>Field theory</topic><topic>Glass transition</topic><topic>Glass transitions</topic><topic>Glassy dynamics</topic><topic>Mass transfer</topic><topic>MATERIALS SCIENCE</topic><topic>Mean field theory</topic><topic>Membrane technology</topic><topic>Membranes</topic><topic>Micelles</topic><topic>Parameter sensitivity</topic><topic>Phase separation</topic><topic>Polymers</topic><topic>Process parameters</topic><topic>Random phase approximation</topic><topic>Self consistent fields</topic><topic>Self-assembly</topic><topic>Solvents</topic><topic>Surface layers</topic><topic>Thermal fluctuations</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cooper, Anthony J.</creatorcontrib><creatorcontrib>Grzetic, Douglas J.</creatorcontrib><creatorcontrib>Delaney, Kris T.</creatorcontrib><creatorcontrib>Fredrickson, Glenn H.</creatorcontrib><creatorcontrib>Univ. of California, Santa Barbara, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cooper, Anthony J.</au><au>Grzetic, Douglas J.</au><au>Delaney, Kris T.</au><au>Fredrickson, Glenn H.</au><aucorp>Univ. of California, Santa Barbara, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating microstructure evolution in block copolymer membranes</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-02-21</date><risdate>2024</risdate><volume>160</volume><issue>7</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Block copolymer self-assembly in conjunction with nonsolvent-induced phase separation (SNIPS) has been increasingly leveraged to fabricate integral-asymmetric membranes. The large number of formulation and processing parameters associated with SNIPS, however, has prevented the reliable construction of high performance membranes. In this study, we apply dynamical self-consistent field theory to model the SNIPS process and investigate the effect of various parameters on the membrane morphology: solvent selectivity, nonsolvent selectivity, initial film composition, and glass transition composition. We examine how solvent selectivity and concentration of polymers in the film impact the structure of micelles that connect to form the membrane matrix. In particular, we find that preserving the order in the surface layer and forming a connection between the supporting and surface layer are nontrivial and sensitive to each parameter studied. The effect of each parameter is discussed, and suggestions are made for successfully fabricating viable block copolymer membranes.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>38380746</pmid><doi>10.1063/5.0188196</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6716-9017</orcidid><orcidid>https://orcid.org/0000-0001-9808-0739</orcidid><orcidid>https://orcid.org/0000-0003-0356-1391</orcidid><orcidid>https://orcid.org/0000-0002-5185-6920</orcidid><orcidid>https://orcid.org/0000000303561391</orcidid><orcidid>https://orcid.org/0000000267169017</orcidid><orcidid>https://orcid.org/0000000251856920</orcidid><orcidid>https://orcid.org/0000000198080739</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2024-02, Vol.160 (7) |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0188196 |
source | AIP Journals Complete |
subjects | Block copolymer Block copolymers Composition Field theory Glass transition Glass transitions Glassy dynamics Mass transfer MATERIALS SCIENCE Mean field theory Membrane technology Membranes Micelles Parameter sensitivity Phase separation Polymers Process parameters Random phase approximation Self consistent fields Self-assembly Solvents Surface layers Thermal fluctuations Thin films |
title | Investigating microstructure evolution in block copolymer membranes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20microstructure%20evolution%20in%20block%20copolymer%20membranes&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Cooper,%20Anthony%20J.&rft.aucorp=Univ.%20of%20California,%20Santa%20Barbara,%20CA%20(United%20States)&rft.date=2024-02-21&rft.volume=160&rft.issue=7&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0188196&rft_dat=%3Cproquest_scita%3E2929257859%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2929257859&rft_id=info:pmid/38380746&rfr_iscdi=true |