Weighted spherical monogenics

It is well known in Clifford analysis that monogenic functions are solutions of the Dirac operator and from a physical point of view, they are interpreted as functions that solve the relativistic equation of the motion of particles of spin 1/2, electrons, i.e that solve the physic Dirac equation. Fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nunez, Benjamin de Zayas, Vanegas, Carmen Judith
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2994
creator Nunez, Benjamin de Zayas
Vanegas, Carmen Judith
description It is well known in Clifford analysis that monogenic functions are solutions of the Dirac operator and from a physical point of view, they are interpreted as functions that solve the relativistic equation of the motion of particles of spin 1/2, electrons, i.e that solve the physic Dirac equation. Functions with values in Clifford algebras can solve the weighted Dirac operator and these functions can belong to the internal space of functions that solve the Dirac equation for an anisotropic medium, where the weights do the effect of the different physical properties depending on the direction of motion in the medium. In this work, we extend the definition of spherical monogenics giving the definition of weighted spherical monogenics and found a basis for such polynomials.
doi_str_mv 10.1063/5.0188098
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0188098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2915740082</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1688-399602525c1381f6f6eff060864108badc73a9d5cde56c5857edb8e6ff44173a3</originalsourceid><addsrcrecordid>eNotj01Lw0AURQdRMFYX_gCh4E5IfW8-3yylWBUKbhTdDdPJTJvSJjGTLvz3RtrVXdzDvRzGbhFmCFo8qhkgEVg6YwUqhaXRqM9ZAWBlyaX4vmRXOW8BuDWGCnb3Fev1ZojVNHeb2NfB76b7tmnXsalDvmYXye9yvDnlhH0unj_mr-Xy_eVt_rQsO9REpbBWA1dcBRSESScdUwINpCUCrXwVjPC2UqGKSgdFysRqRVGnJCWOlZiw--Nu17c_h5gHt20PfTNeOm5RGQlAfKQejlQO9eCHum1c19d73_86BPev75Q76Ys_RQZKKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2915740082</pqid></control><display><type>conference_proceeding</type><title>Weighted spherical monogenics</title><source>AIP Journals Complete</source><creator>Nunez, Benjamin de Zayas ; Vanegas, Carmen Judith</creator><contributor>Hormaza, Jaime Meza ; Espinoza, Carmen Judith Vanegas ; Maddela, Naga Raju ; López, Nadia Aimee González ; Barreto, Oswaldo José Larreal ; Alvarado, Daniel Alfredo Leal ; Rodríguez-Díaz, Joan Manuel</contributor><creatorcontrib>Nunez, Benjamin de Zayas ; Vanegas, Carmen Judith ; Hormaza, Jaime Meza ; Espinoza, Carmen Judith Vanegas ; Maddela, Naga Raju ; López, Nadia Aimee González ; Barreto, Oswaldo José Larreal ; Alvarado, Daniel Alfredo Leal ; Rodríguez-Díaz, Joan Manuel</creatorcontrib><description>It is well known in Clifford analysis that monogenic functions are solutions of the Dirac operator and from a physical point of view, they are interpreted as functions that solve the relativistic equation of the motion of particles of spin 1/2, electrons, i.e that solve the physic Dirac equation. Functions with values in Clifford algebras can solve the weighted Dirac operator and these functions can belong to the internal space of functions that solve the Dirac equation for an anisotropic medium, where the weights do the effect of the different physical properties depending on the direction of motion in the medium. In this work, we extend the definition of spherical monogenics giving the definition of weighted spherical monogenics and found a basis for such polynomials.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0188098</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anisotropic media ; Dirac equation ; Electron spin ; Mathematical analysis ; Operators (mathematics) ; Particle spin ; Physical properties ; Polynomials</subject><ispartof>AIP conference proceedings, 2024, Vol.2994 (1)</ispartof><rights>AIP Publishing LLC</rights><rights>2024 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0188098$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76126</link.rule.ids></links><search><contributor>Hormaza, Jaime Meza</contributor><contributor>Espinoza, Carmen Judith Vanegas</contributor><contributor>Maddela, Naga Raju</contributor><contributor>López, Nadia Aimee González</contributor><contributor>Barreto, Oswaldo José Larreal</contributor><contributor>Alvarado, Daniel Alfredo Leal</contributor><contributor>Rodríguez-Díaz, Joan Manuel</contributor><creatorcontrib>Nunez, Benjamin de Zayas</creatorcontrib><creatorcontrib>Vanegas, Carmen Judith</creatorcontrib><title>Weighted spherical monogenics</title><title>AIP conference proceedings</title><description>It is well known in Clifford analysis that monogenic functions are solutions of the Dirac operator and from a physical point of view, they are interpreted as functions that solve the relativistic equation of the motion of particles of spin 1/2, electrons, i.e that solve the physic Dirac equation. Functions with values in Clifford algebras can solve the weighted Dirac operator and these functions can belong to the internal space of functions that solve the Dirac equation for an anisotropic medium, where the weights do the effect of the different physical properties depending on the direction of motion in the medium. In this work, we extend the definition of spherical monogenics giving the definition of weighted spherical monogenics and found a basis for such polynomials.</description><subject>Anisotropic media</subject><subject>Dirac equation</subject><subject>Electron spin</subject><subject>Mathematical analysis</subject><subject>Operators (mathematics)</subject><subject>Particle spin</subject><subject>Physical properties</subject><subject>Polynomials</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotj01Lw0AURQdRMFYX_gCh4E5IfW8-3yylWBUKbhTdDdPJTJvSJjGTLvz3RtrVXdzDvRzGbhFmCFo8qhkgEVg6YwUqhaXRqM9ZAWBlyaX4vmRXOW8BuDWGCnb3Fev1ZojVNHeb2NfB76b7tmnXsalDvmYXye9yvDnlhH0unj_mr-Xy_eVt_rQsO9REpbBWA1dcBRSESScdUwINpCUCrXwVjPC2UqGKSgdFysRqRVGnJCWOlZiw--Nu17c_h5gHt20PfTNeOm5RGQlAfKQejlQO9eCHum1c19d73_86BPev75Q76Ys_RQZKKw</recordid><startdate>20240117</startdate><enddate>20240117</enddate><creator>Nunez, Benjamin de Zayas</creator><creator>Vanegas, Carmen Judith</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240117</creationdate><title>Weighted spherical monogenics</title><author>Nunez, Benjamin de Zayas ; Vanegas, Carmen Judith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1688-399602525c1381f6f6eff060864108badc73a9d5cde56c5857edb8e6ff44173a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anisotropic media</topic><topic>Dirac equation</topic><topic>Electron spin</topic><topic>Mathematical analysis</topic><topic>Operators (mathematics)</topic><topic>Particle spin</topic><topic>Physical properties</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nunez, Benjamin de Zayas</creatorcontrib><creatorcontrib>Vanegas, Carmen Judith</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nunez, Benjamin de Zayas</au><au>Vanegas, Carmen Judith</au><au>Hormaza, Jaime Meza</au><au>Espinoza, Carmen Judith Vanegas</au><au>Maddela, Naga Raju</au><au>López, Nadia Aimee González</au><au>Barreto, Oswaldo José Larreal</au><au>Alvarado, Daniel Alfredo Leal</au><au>Rodríguez-Díaz, Joan Manuel</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Weighted spherical monogenics</atitle><btitle>AIP conference proceedings</btitle><date>2024-01-17</date><risdate>2024</risdate><volume>2994</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>It is well known in Clifford analysis that monogenic functions are solutions of the Dirac operator and from a physical point of view, they are interpreted as functions that solve the relativistic equation of the motion of particles of spin 1/2, electrons, i.e that solve the physic Dirac equation. Functions with values in Clifford algebras can solve the weighted Dirac operator and these functions can belong to the internal space of functions that solve the Dirac equation for an anisotropic medium, where the weights do the effect of the different physical properties depending on the direction of motion in the medium. In this work, we extend the definition of spherical monogenics giving the definition of weighted spherical monogenics and found a basis for such polynomials.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0188098</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.2994 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0188098
source AIP Journals Complete
subjects Anisotropic media
Dirac equation
Electron spin
Mathematical analysis
Operators (mathematics)
Particle spin
Physical properties
Polynomials
title Weighted spherical monogenics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A31%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Weighted%20spherical%20monogenics&rft.btitle=AIP%20conference%20proceedings&rft.au=Nunez,%20Benjamin%20de%20Zayas&rft.date=2024-01-17&rft.volume=2994&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0188098&rft_dat=%3Cproquest_scita%3E2915740082%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915740082&rft_id=info:pmid/&rfr_iscdi=true