Weighted spherical monogenics
It is well known in Clifford analysis that monogenic functions are solutions of the Dirac operator and from a physical point of view, they are interpreted as functions that solve the relativistic equation of the motion of particles of spin 1/2, electrons, i.e that solve the physic Dirac equation. Fu...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2994 |
creator | Nunez, Benjamin de Zayas Vanegas, Carmen Judith |
description | It is well known in Clifford analysis that monogenic functions are solutions of the Dirac operator and from a physical point of view, they are interpreted as functions that solve the relativistic equation of the motion of particles of spin 1/2, electrons, i.e that solve the physic Dirac equation. Functions with values in Clifford algebras can solve the weighted Dirac operator and these functions can belong to the internal space of functions that solve the Dirac equation for an anisotropic medium, where the weights do the effect of the different physical properties depending on the direction of motion in the medium. In this work, we extend the definition of spherical monogenics giving the definition of weighted spherical monogenics and found a basis for such polynomials. |
doi_str_mv | 10.1063/5.0188098 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0188098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2915740082</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1688-399602525c1381f6f6eff060864108badc73a9d5cde56c5857edb8e6ff44173a3</originalsourceid><addsrcrecordid>eNotj01Lw0AURQdRMFYX_gCh4E5IfW8-3yylWBUKbhTdDdPJTJvSJjGTLvz3RtrVXdzDvRzGbhFmCFo8qhkgEVg6YwUqhaXRqM9ZAWBlyaX4vmRXOW8BuDWGCnb3Fev1ZojVNHeb2NfB76b7tmnXsalDvmYXye9yvDnlhH0unj_mr-Xy_eVt_rQsO9REpbBWA1dcBRSESScdUwINpCUCrXwVjPC2UqGKSgdFysRqRVGnJCWOlZiw--Nu17c_h5gHt20PfTNeOm5RGQlAfKQejlQO9eCHum1c19d73_86BPev75Q76Ys_RQZKKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2915740082</pqid></control><display><type>conference_proceeding</type><title>Weighted spherical monogenics</title><source>AIP Journals Complete</source><creator>Nunez, Benjamin de Zayas ; Vanegas, Carmen Judith</creator><contributor>Hormaza, Jaime Meza ; Espinoza, Carmen Judith Vanegas ; Maddela, Naga Raju ; López, Nadia Aimee González ; Barreto, Oswaldo José Larreal ; Alvarado, Daniel Alfredo Leal ; Rodríguez-Díaz, Joan Manuel</contributor><creatorcontrib>Nunez, Benjamin de Zayas ; Vanegas, Carmen Judith ; Hormaza, Jaime Meza ; Espinoza, Carmen Judith Vanegas ; Maddela, Naga Raju ; López, Nadia Aimee González ; Barreto, Oswaldo José Larreal ; Alvarado, Daniel Alfredo Leal ; Rodríguez-Díaz, Joan Manuel</creatorcontrib><description>It is well known in Clifford analysis that monogenic functions are solutions of the Dirac operator and from a physical point of view, they are interpreted as functions that solve the relativistic equation of the motion of particles of spin 1/2, electrons, i.e that solve the physic Dirac equation. Functions with values in Clifford algebras can solve the weighted Dirac operator and these functions can belong to the internal space of functions that solve the Dirac equation for an anisotropic medium, where the weights do the effect of the different physical properties depending on the direction of motion in the medium. In this work, we extend the definition of spherical monogenics giving the definition of weighted spherical monogenics and found a basis for such polynomials.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0188098</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anisotropic media ; Dirac equation ; Electron spin ; Mathematical analysis ; Operators (mathematics) ; Particle spin ; Physical properties ; Polynomials</subject><ispartof>AIP conference proceedings, 2024, Vol.2994 (1)</ispartof><rights>AIP Publishing LLC</rights><rights>2024 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0188098$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76126</link.rule.ids></links><search><contributor>Hormaza, Jaime Meza</contributor><contributor>Espinoza, Carmen Judith Vanegas</contributor><contributor>Maddela, Naga Raju</contributor><contributor>López, Nadia Aimee González</contributor><contributor>Barreto, Oswaldo José Larreal</contributor><contributor>Alvarado, Daniel Alfredo Leal</contributor><contributor>Rodríguez-Díaz, Joan Manuel</contributor><creatorcontrib>Nunez, Benjamin de Zayas</creatorcontrib><creatorcontrib>Vanegas, Carmen Judith</creatorcontrib><title>Weighted spherical monogenics</title><title>AIP conference proceedings</title><description>It is well known in Clifford analysis that monogenic functions are solutions of the Dirac operator and from a physical point of view, they are interpreted as functions that solve the relativistic equation of the motion of particles of spin 1/2, electrons, i.e that solve the physic Dirac equation. Functions with values in Clifford algebras can solve the weighted Dirac operator and these functions can belong to the internal space of functions that solve the Dirac equation for an anisotropic medium, where the weights do the effect of the different physical properties depending on the direction of motion in the medium. In this work, we extend the definition of spherical monogenics giving the definition of weighted spherical monogenics and found a basis for such polynomials.</description><subject>Anisotropic media</subject><subject>Dirac equation</subject><subject>Electron spin</subject><subject>Mathematical analysis</subject><subject>Operators (mathematics)</subject><subject>Particle spin</subject><subject>Physical properties</subject><subject>Polynomials</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotj01Lw0AURQdRMFYX_gCh4E5IfW8-3yylWBUKbhTdDdPJTJvSJjGTLvz3RtrVXdzDvRzGbhFmCFo8qhkgEVg6YwUqhaXRqM9ZAWBlyaX4vmRXOW8BuDWGCnb3Fev1ZojVNHeb2NfB76b7tmnXsalDvmYXye9yvDnlhH0unj_mr-Xy_eVt_rQsO9REpbBWA1dcBRSESScdUwINpCUCrXwVjPC2UqGKSgdFysRqRVGnJCWOlZiw--Nu17c_h5gHt20PfTNeOm5RGQlAfKQejlQO9eCHum1c19d73_86BPev75Q76Ys_RQZKKw</recordid><startdate>20240117</startdate><enddate>20240117</enddate><creator>Nunez, Benjamin de Zayas</creator><creator>Vanegas, Carmen Judith</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240117</creationdate><title>Weighted spherical monogenics</title><author>Nunez, Benjamin de Zayas ; Vanegas, Carmen Judith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1688-399602525c1381f6f6eff060864108badc73a9d5cde56c5857edb8e6ff44173a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anisotropic media</topic><topic>Dirac equation</topic><topic>Electron spin</topic><topic>Mathematical analysis</topic><topic>Operators (mathematics)</topic><topic>Particle spin</topic><topic>Physical properties</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nunez, Benjamin de Zayas</creatorcontrib><creatorcontrib>Vanegas, Carmen Judith</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nunez, Benjamin de Zayas</au><au>Vanegas, Carmen Judith</au><au>Hormaza, Jaime Meza</au><au>Espinoza, Carmen Judith Vanegas</au><au>Maddela, Naga Raju</au><au>López, Nadia Aimee González</au><au>Barreto, Oswaldo José Larreal</au><au>Alvarado, Daniel Alfredo Leal</au><au>Rodríguez-Díaz, Joan Manuel</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Weighted spherical monogenics</atitle><btitle>AIP conference proceedings</btitle><date>2024-01-17</date><risdate>2024</risdate><volume>2994</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>It is well known in Clifford analysis that monogenic functions are solutions of the Dirac operator and from a physical point of view, they are interpreted as functions that solve the relativistic equation of the motion of particles of spin 1/2, electrons, i.e that solve the physic Dirac equation. Functions with values in Clifford algebras can solve the weighted Dirac operator and these functions can belong to the internal space of functions that solve the Dirac equation for an anisotropic medium, where the weights do the effect of the different physical properties depending on the direction of motion in the medium. In this work, we extend the definition of spherical monogenics giving the definition of weighted spherical monogenics and found a basis for such polynomials.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0188098</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.2994 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0188098 |
source | AIP Journals Complete |
subjects | Anisotropic media Dirac equation Electron spin Mathematical analysis Operators (mathematics) Particle spin Physical properties Polynomials |
title | Weighted spherical monogenics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A31%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Weighted%20spherical%20monogenics&rft.btitle=AIP%20conference%20proceedings&rft.au=Nunez,%20Benjamin%20de%20Zayas&rft.date=2024-01-17&rft.volume=2994&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0188098&rft_dat=%3Cproquest_scita%3E2915740082%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915740082&rft_id=info:pmid/&rfr_iscdi=true |