Efficient formulation of multitime generalized quantum master equations: Taming the cost of simulating 2D spectra
Modern 4-wave mixing spectroscopies are expensive to obtain experimentally and computationally. In certain cases, the unfavorable scaling of quantum dynamics problems can be improved using a generalized quantum master equation (GQME) approach. However, the inclusion of multiple (light–matter) intera...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2024-01, Vol.160 (4) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | The Journal of chemical physics |
container_volume | 160 |
creator | Sayer, Thomas Montoya-Castillo, Andrés |
description | Modern 4-wave mixing spectroscopies are expensive to obtain experimentally and computationally. In certain cases, the unfavorable scaling of quantum dynamics problems can be improved using a generalized quantum master equation (GQME) approach. However, the inclusion of multiple (light–matter) interactions complicates the equation of motion and leads to seemingly unavoidable cubic scaling in time. In this paper, we present a formulation that greatly simplifies and reduces the computational cost of previous work that extended the GQME framework to treat arbitrary numbers of quantum measurements. Specifically, we remove the time derivatives of quantum correlation functions from the modified Mori–Nakajima–Zwanzig framework by switching to a discrete-convolution implementation inspired by the transfer tensor approach. We then demonstrate the method’s capabilities by simulating 2D electronic spectra for the excitation-energy-transfer dimer model. In our method, the resolution of data can be arbitrarily coarsened, especially along the t2 axis, which mirrors how the data are obtained experimentally. Even in a modest case, this demands O(103) fewer data points. We are further able to decompose the spectra into one-, two-, and three-time correlations, showing how and when the system enters a Markovian regime where further measurements are unnecessary to predict future spectra and the scaling becomes quadratic. This offers the ability to generate long-time spectra using only short-time data, enabling access to timescales previously beyond the reach of standard methodologies. |
doi_str_mv | 10.1063/5.0185578 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0185578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918512121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-cf1c2abdb7a0d74c25ab4dd68c1aeb476f4886971e6e91f60103628f544a78f43</originalsourceid><addsrcrecordid>eNp9kclKBDEQhoMoOi4HX0ACXlRozdKdpL2JjgsMeBnPTTpd0UgvM0n6oE9vxhk9eJAcKglffRR_IXRMySUlgl8Vl4SqopBqC00oUWUmRUm20YQQRrNSELGH9kN4J4RQyfJdtMcVk4RxNUHLqbXOOOgjtoPvxlZHN_R4sDjdo4uuA_wKPXjduk9o8HLUfRw73OkQwWNI71VDuMZz3bn-Fcc3wGYIcaUIbi1M3-wOhwWY6PUh2rG6DXC0qQfo5X46v33MZs8PT7c3s8xwxWNmLDVM100tNWlkblih67xphDJUQ51LYXOlRCkpCCipFYQSLpiyRZ5rqWzOD9DZ2rvww3KEEKvOBQNtq3sYxlCxMmVGWToJPf2Dvg-j79N03xTnq3ATdb6mjB9C8GCrhXed9h8VJdVqD1VRbfaQ2JONcaw7aH7Jn-ATcLEGgnHxO8J_bF8thJB6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918338557</pqid></control><display><type>article</type><title>Efficient formulation of multitime generalized quantum master equations: Taming the cost of simulating 2D spectra</title><source>AIP Journals Complete</source><creator>Sayer, Thomas ; Montoya-Castillo, Andrés</creator><creatorcontrib>Sayer, Thomas ; Montoya-Castillo, Andrés</creatorcontrib><description>Modern 4-wave mixing spectroscopies are expensive to obtain experimentally and computationally. In certain cases, the unfavorable scaling of quantum dynamics problems can be improved using a generalized quantum master equation (GQME) approach. However, the inclusion of multiple (light–matter) interactions complicates the equation of motion and leads to seemingly unavoidable cubic scaling in time. In this paper, we present a formulation that greatly simplifies and reduces the computational cost of previous work that extended the GQME framework to treat arbitrary numbers of quantum measurements. Specifically, we remove the time derivatives of quantum correlation functions from the modified Mori–Nakajima–Zwanzig framework by switching to a discrete-convolution implementation inspired by the transfer tensor approach. We then demonstrate the method’s capabilities by simulating 2D electronic spectra for the excitation-energy-transfer dimer model. In our method, the resolution of data can be arbitrarily coarsened, especially along the t2 axis, which mirrors how the data are obtained experimentally. Even in a modest case, this demands O(103) fewer data points. We are further able to decompose the spectra into one-, two-, and three-time correlations, showing how and when the system enters a Markovian regime where further measurements are unnecessary to predict future spectra and the scaling becomes quadratic. This offers the ability to generate long-time spectra using only short-time data, enabling access to timescales previously beyond the reach of standard methodologies.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0185578</identifier><identifier>PMID: 38270238</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Computing costs ; Correlation ; Data points ; Electronic spectra ; Equations of motion ; Excitation spectra ; Scaling ; Tensors</subject><ispartof>The Journal of chemical physics, 2024-01, Vol.160 (4)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-cf1c2abdb7a0d74c25ab4dd68c1aeb476f4886971e6e91f60103628f544a78f43</citedby><cites>FETCH-LOGICAL-c383t-cf1c2abdb7a0d74c25ab4dd68c1aeb476f4886971e6e91f60103628f544a78f43</cites><orcidid>0000-0001-6156-0835 ; 0000-0003-3037-3695</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0185578$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76130</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38270238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sayer, Thomas</creatorcontrib><creatorcontrib>Montoya-Castillo, Andrés</creatorcontrib><title>Efficient formulation of multitime generalized quantum master equations: Taming the cost of simulating 2D spectra</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Modern 4-wave mixing spectroscopies are expensive to obtain experimentally and computationally. In certain cases, the unfavorable scaling of quantum dynamics problems can be improved using a generalized quantum master equation (GQME) approach. However, the inclusion of multiple (light–matter) interactions complicates the equation of motion and leads to seemingly unavoidable cubic scaling in time. In this paper, we present a formulation that greatly simplifies and reduces the computational cost of previous work that extended the GQME framework to treat arbitrary numbers of quantum measurements. Specifically, we remove the time derivatives of quantum correlation functions from the modified Mori–Nakajima–Zwanzig framework by switching to a discrete-convolution implementation inspired by the transfer tensor approach. We then demonstrate the method’s capabilities by simulating 2D electronic spectra for the excitation-energy-transfer dimer model. In our method, the resolution of data can be arbitrarily coarsened, especially along the t2 axis, which mirrors how the data are obtained experimentally. Even in a modest case, this demands O(103) fewer data points. We are further able to decompose the spectra into one-, two-, and three-time correlations, showing how and when the system enters a Markovian regime where further measurements are unnecessary to predict future spectra and the scaling becomes quadratic. This offers the ability to generate long-time spectra using only short-time data, enabling access to timescales previously beyond the reach of standard methodologies.</description><subject>Computing costs</subject><subject>Correlation</subject><subject>Data points</subject><subject>Electronic spectra</subject><subject>Equations of motion</subject><subject>Excitation spectra</subject><subject>Scaling</subject><subject>Tensors</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kclKBDEQhoMoOi4HX0ACXlRozdKdpL2JjgsMeBnPTTpd0UgvM0n6oE9vxhk9eJAcKglffRR_IXRMySUlgl8Vl4SqopBqC00oUWUmRUm20YQQRrNSELGH9kN4J4RQyfJdtMcVk4RxNUHLqbXOOOgjtoPvxlZHN_R4sDjdo4uuA_wKPXjduk9o8HLUfRw73OkQwWNI71VDuMZz3bn-Fcc3wGYIcaUIbi1M3-wOhwWY6PUh2rG6DXC0qQfo5X46v33MZs8PT7c3s8xwxWNmLDVM100tNWlkblih67xphDJUQ51LYXOlRCkpCCipFYQSLpiyRZ5rqWzOD9DZ2rvww3KEEKvOBQNtq3sYxlCxMmVGWToJPf2Dvg-j79N03xTnq3ATdb6mjB9C8GCrhXed9h8VJdVqD1VRbfaQ2JONcaw7aH7Jn-ATcLEGgnHxO8J_bF8thJB6</recordid><startdate>20240128</startdate><enddate>20240128</enddate><creator>Sayer, Thomas</creator><creator>Montoya-Castillo, Andrés</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6156-0835</orcidid><orcidid>https://orcid.org/0000-0003-3037-3695</orcidid></search><sort><creationdate>20240128</creationdate><title>Efficient formulation of multitime generalized quantum master equations: Taming the cost of simulating 2D spectra</title><author>Sayer, Thomas ; Montoya-Castillo, Andrés</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-cf1c2abdb7a0d74c25ab4dd68c1aeb476f4886971e6e91f60103628f544a78f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computing costs</topic><topic>Correlation</topic><topic>Data points</topic><topic>Electronic spectra</topic><topic>Equations of motion</topic><topic>Excitation spectra</topic><topic>Scaling</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sayer, Thomas</creatorcontrib><creatorcontrib>Montoya-Castillo, Andrés</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sayer, Thomas</au><au>Montoya-Castillo, Andrés</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient formulation of multitime generalized quantum master equations: Taming the cost of simulating 2D spectra</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-01-28</date><risdate>2024</risdate><volume>160</volume><issue>4</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Modern 4-wave mixing spectroscopies are expensive to obtain experimentally and computationally. In certain cases, the unfavorable scaling of quantum dynamics problems can be improved using a generalized quantum master equation (GQME) approach. However, the inclusion of multiple (light–matter) interactions complicates the equation of motion and leads to seemingly unavoidable cubic scaling in time. In this paper, we present a formulation that greatly simplifies and reduces the computational cost of previous work that extended the GQME framework to treat arbitrary numbers of quantum measurements. Specifically, we remove the time derivatives of quantum correlation functions from the modified Mori–Nakajima–Zwanzig framework by switching to a discrete-convolution implementation inspired by the transfer tensor approach. We then demonstrate the method’s capabilities by simulating 2D electronic spectra for the excitation-energy-transfer dimer model. In our method, the resolution of data can be arbitrarily coarsened, especially along the t2 axis, which mirrors how the data are obtained experimentally. Even in a modest case, this demands O(103) fewer data points. We are further able to decompose the spectra into one-, two-, and three-time correlations, showing how and when the system enters a Markovian regime where further measurements are unnecessary to predict future spectra and the scaling becomes quadratic. This offers the ability to generate long-time spectra using only short-time data, enabling access to timescales previously beyond the reach of standard methodologies.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>38270238</pmid><doi>10.1063/5.0185578</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6156-0835</orcidid><orcidid>https://orcid.org/0000-0003-3037-3695</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2024-01, Vol.160 (4) |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0185578 |
source | AIP Journals Complete |
subjects | Computing costs Correlation Data points Electronic spectra Equations of motion Excitation spectra Scaling Tensors |
title | Efficient formulation of multitime generalized quantum master equations: Taming the cost of simulating 2D spectra |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20formulation%20of%20multitime%20generalized%20quantum%20master%20equations:%20Taming%20the%20cost%20of%20simulating%202D%20spectra&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Sayer,%20Thomas&rft.date=2024-01-28&rft.volume=160&rft.issue=4&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0185578&rft_dat=%3Cproquest_scita%3E2918512121%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918338557&rft_id=info:pmid/38270238&rfr_iscdi=true |