Improved dynamic characteristics of oxide electrolyte-gated transistor for time-delayed reservoir computing

Time-delayed reservoir computing (RC) equipped with prominent superiorities such as easy training and friendly hardware implementation is identified as a high-efficient answer to complex temporal tasks, and thereby draws increasing attention. Oxygen ion-based oxide electrolyte-gated transistor (Ox-E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2024-01, Vol.124 (5)
Hauptverfasser: Fang, Renrui, Li, Xufan, Ren, Kuan, Zhang, Woyu, Xu, Han, Wang, Lingfei, Shang, Dashan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Applied physics letters
container_volume 124
creator Fang, Renrui
Li, Xufan
Ren, Kuan
Zhang, Woyu
Xu, Han
Wang, Lingfei
Shang, Dashan
description Time-delayed reservoir computing (RC) equipped with prominent superiorities such as easy training and friendly hardware implementation is identified as a high-efficient answer to complex temporal tasks, and thereby draws increasing attention. Oxygen ion-based oxide electrolyte-gated transistor (Ox-EGT) with rich ion dynamic characteristics is deemed as a promising candidate for RC. However, it is still a challenge to produce the required dynamic characteristics for RC implementation. Herein, we develop an Ox-EGT with an oxygen vacancy-electron-coupled electric-double-layer at the electrolyte/channel interface to implement time-delayed RC. Effects of oxygen vacancy concentration on the short-term plasticity are investigated, revealing the optimal concentration range of oxygen vacancies for the dynamic characteristics improvement. The underlying physical mechanism is demonstrated by TCAD simulations. Simulations using the waveform classification and handwritten-digit recognition tasks validate the good information processing ability of the Ox-EGT RC system. These results provide a promising approach to exploit Ox-EGT dynamics for large-scale and energy-efficient neuromorphic computing hardware.
doi_str_mv 10.1063/5.0185402
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0185402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920285663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-2f857c2c1573c20c53dd21084edfa48db2faae78d20cdf1529ebba4d1d216a963</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_0HAk0JqPjb7cZRitVDwouclTSY1dXdTk7S4_95Ie_YwDMP7zLzMi9AtozNGS_EoZ5TVsqD8DE0YrSoiGKvP0YRSKkjZSHaJrmLc5lFyISboa9nvgj-AwWYcVO801p8qKJ0guJicjthb7H-cAQwd6BR8NyYgG5XySgpqiBnzAdtcyfVADHRqzFqACOHgXcDa97t9csPmGl1Y1UW4OfUp-lg8v89fyertZTl_WhHNJU-E21pWmmsmK6E51VIYwxmtCzBWFbVZc6sUVLXJmrFM8gbWa1UYlqlSNaWYorvj3fzZ9x5iard-H4Zs2fKGU17LshSZuj9SOvgYA9h2F1yvwtgy2v5l2cr2lGVmH45s1C6p5PzwD_wLLWJ2OQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920285663</pqid></control><display><type>article</type><title>Improved dynamic characteristics of oxide electrolyte-gated transistor for time-delayed reservoir computing</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Fang, Renrui ; Li, Xufan ; Ren, Kuan ; Zhang, Woyu ; Xu, Han ; Wang, Lingfei ; Shang, Dashan</creator><creatorcontrib>Fang, Renrui ; Li, Xufan ; Ren, Kuan ; Zhang, Woyu ; Xu, Han ; Wang, Lingfei ; Shang, Dashan</creatorcontrib><description>Time-delayed reservoir computing (RC) equipped with prominent superiorities such as easy training and friendly hardware implementation is identified as a high-efficient answer to complex temporal tasks, and thereby draws increasing attention. Oxygen ion-based oxide electrolyte-gated transistor (Ox-EGT) with rich ion dynamic characteristics is deemed as a promising candidate for RC. However, it is still a challenge to produce the required dynamic characteristics for RC implementation. Herein, we develop an Ox-EGT with an oxygen vacancy-electron-coupled electric-double-layer at the electrolyte/channel interface to implement time-delayed RC. Effects of oxygen vacancy concentration on the short-term plasticity are investigated, revealing the optimal concentration range of oxygen vacancies for the dynamic characteristics improvement. The underlying physical mechanism is demonstrated by TCAD simulations. Simulations using the waveform classification and handwritten-digit recognition tasks validate the good information processing ability of the Ox-EGT RC system. These results provide a promising approach to exploit Ox-EGT dynamics for large-scale and energy-efficient neuromorphic computing hardware.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0185402</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computing time ; Data processing ; Dynamic characteristics ; Electrolytes ; Handwriting recognition ; Hardware ; Oxygen ions ; Task complexity ; Transistors ; Waveforms</subject><ispartof>Applied physics letters, 2024-01, Vol.124 (5)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-2f857c2c1573c20c53dd21084edfa48db2faae78d20cdf1529ebba4d1d216a963</cites><orcidid>0009-0006-1534-9856 ; 0000-0003-3579-8406 ; 0009-0003-5197-1974 ; 0000-0003-3573-8390 ; 0000-0003-2114-5711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0185402$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76353</link.rule.ids></links><search><creatorcontrib>Fang, Renrui</creatorcontrib><creatorcontrib>Li, Xufan</creatorcontrib><creatorcontrib>Ren, Kuan</creatorcontrib><creatorcontrib>Zhang, Woyu</creatorcontrib><creatorcontrib>Xu, Han</creatorcontrib><creatorcontrib>Wang, Lingfei</creatorcontrib><creatorcontrib>Shang, Dashan</creatorcontrib><title>Improved dynamic characteristics of oxide electrolyte-gated transistor for time-delayed reservoir computing</title><title>Applied physics letters</title><description>Time-delayed reservoir computing (RC) equipped with prominent superiorities such as easy training and friendly hardware implementation is identified as a high-efficient answer to complex temporal tasks, and thereby draws increasing attention. Oxygen ion-based oxide electrolyte-gated transistor (Ox-EGT) with rich ion dynamic characteristics is deemed as a promising candidate for RC. However, it is still a challenge to produce the required dynamic characteristics for RC implementation. Herein, we develop an Ox-EGT with an oxygen vacancy-electron-coupled electric-double-layer at the electrolyte/channel interface to implement time-delayed RC. Effects of oxygen vacancy concentration on the short-term plasticity are investigated, revealing the optimal concentration range of oxygen vacancies for the dynamic characteristics improvement. The underlying physical mechanism is demonstrated by TCAD simulations. Simulations using the waveform classification and handwritten-digit recognition tasks validate the good information processing ability of the Ox-EGT RC system. These results provide a promising approach to exploit Ox-EGT dynamics for large-scale and energy-efficient neuromorphic computing hardware.</description><subject>Computing time</subject><subject>Data processing</subject><subject>Dynamic characteristics</subject><subject>Electrolytes</subject><subject>Handwriting recognition</subject><subject>Hardware</subject><subject>Oxygen ions</subject><subject>Task complexity</subject><subject>Transistors</subject><subject>Waveforms</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_0HAk0JqPjb7cZRitVDwouclTSY1dXdTk7S4_95Ie_YwDMP7zLzMi9AtozNGS_EoZ5TVsqD8DE0YrSoiGKvP0YRSKkjZSHaJrmLc5lFyISboa9nvgj-AwWYcVO801p8qKJ0guJicjthb7H-cAQwd6BR8NyYgG5XySgpqiBnzAdtcyfVADHRqzFqACOHgXcDa97t9csPmGl1Y1UW4OfUp-lg8v89fyertZTl_WhHNJU-E21pWmmsmK6E51VIYwxmtCzBWFbVZc6sUVLXJmrFM8gbWa1UYlqlSNaWYorvj3fzZ9x5iard-H4Zs2fKGU17LshSZuj9SOvgYA9h2F1yvwtgy2v5l2cr2lGVmH45s1C6p5PzwD_wLLWJ2OQ</recordid><startdate>20240129</startdate><enddate>20240129</enddate><creator>Fang, Renrui</creator><creator>Li, Xufan</creator><creator>Ren, Kuan</creator><creator>Zhang, Woyu</creator><creator>Xu, Han</creator><creator>Wang, Lingfei</creator><creator>Shang, Dashan</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0006-1534-9856</orcidid><orcidid>https://orcid.org/0000-0003-3579-8406</orcidid><orcidid>https://orcid.org/0009-0003-5197-1974</orcidid><orcidid>https://orcid.org/0000-0003-3573-8390</orcidid><orcidid>https://orcid.org/0000-0003-2114-5711</orcidid></search><sort><creationdate>20240129</creationdate><title>Improved dynamic characteristics of oxide electrolyte-gated transistor for time-delayed reservoir computing</title><author>Fang, Renrui ; Li, Xufan ; Ren, Kuan ; Zhang, Woyu ; Xu, Han ; Wang, Lingfei ; Shang, Dashan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-2f857c2c1573c20c53dd21084edfa48db2faae78d20cdf1529ebba4d1d216a963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computing time</topic><topic>Data processing</topic><topic>Dynamic characteristics</topic><topic>Electrolytes</topic><topic>Handwriting recognition</topic><topic>Hardware</topic><topic>Oxygen ions</topic><topic>Task complexity</topic><topic>Transistors</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Renrui</creatorcontrib><creatorcontrib>Li, Xufan</creatorcontrib><creatorcontrib>Ren, Kuan</creatorcontrib><creatorcontrib>Zhang, Woyu</creatorcontrib><creatorcontrib>Xu, Han</creatorcontrib><creatorcontrib>Wang, Lingfei</creatorcontrib><creatorcontrib>Shang, Dashan</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Renrui</au><au>Li, Xufan</au><au>Ren, Kuan</au><au>Zhang, Woyu</au><au>Xu, Han</au><au>Wang, Lingfei</au><au>Shang, Dashan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved dynamic characteristics of oxide electrolyte-gated transistor for time-delayed reservoir computing</atitle><jtitle>Applied physics letters</jtitle><date>2024-01-29</date><risdate>2024</risdate><volume>124</volume><issue>5</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Time-delayed reservoir computing (RC) equipped with prominent superiorities such as easy training and friendly hardware implementation is identified as a high-efficient answer to complex temporal tasks, and thereby draws increasing attention. Oxygen ion-based oxide electrolyte-gated transistor (Ox-EGT) with rich ion dynamic characteristics is deemed as a promising candidate for RC. However, it is still a challenge to produce the required dynamic characteristics for RC implementation. Herein, we develop an Ox-EGT with an oxygen vacancy-electron-coupled electric-double-layer at the electrolyte/channel interface to implement time-delayed RC. Effects of oxygen vacancy concentration on the short-term plasticity are investigated, revealing the optimal concentration range of oxygen vacancies for the dynamic characteristics improvement. The underlying physical mechanism is demonstrated by TCAD simulations. Simulations using the waveform classification and handwritten-digit recognition tasks validate the good information processing ability of the Ox-EGT RC system. These results provide a promising approach to exploit Ox-EGT dynamics for large-scale and energy-efficient neuromorphic computing hardware.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0185402</doi><tpages>8</tpages><orcidid>https://orcid.org/0009-0006-1534-9856</orcidid><orcidid>https://orcid.org/0000-0003-3579-8406</orcidid><orcidid>https://orcid.org/0009-0003-5197-1974</orcidid><orcidid>https://orcid.org/0000-0003-3573-8390</orcidid><orcidid>https://orcid.org/0000-0003-2114-5711</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2024-01, Vol.124 (5)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_5_0185402
source AIP Journals Complete; Alma/SFX Local Collection
subjects Computing time
Data processing
Dynamic characteristics
Electrolytes
Handwriting recognition
Hardware
Oxygen ions
Task complexity
Transistors
Waveforms
title Improved dynamic characteristics of oxide electrolyte-gated transistor for time-delayed reservoir computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A51%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20dynamic%20characteristics%20of%20oxide%20electrolyte-gated%20transistor%20for%20time-delayed%20reservoir%20computing&rft.jtitle=Applied%20physics%20letters&rft.au=Fang,%20Renrui&rft.date=2024-01-29&rft.volume=124&rft.issue=5&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0185402&rft_dat=%3Cproquest_scita%3E2920285663%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920285663&rft_id=info:pmid/&rfr_iscdi=true