Soil crops and nutrients forecasting using random forest model

Assessing type of soil and its required nutrients is an important domain in modern agriculture. So moving towards the same vision, this research work addresses this issue of forecasting suitable crops on the basis of environmental factors and its yield based on previous data sets available on the ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pranjal, Pragya, Mallick, Saahil, Paul, Aniket, Mishra, Sushruta, Bhardwaj, Indu, Albuquerque, Victor Hugo C. de
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2919
creator Pranjal, Pragya
Mallick, Saahil
Paul, Aniket
Mishra, Sushruta
Bhardwaj, Indu
Albuquerque, Victor Hugo C. de
description Assessing type of soil and its required nutrients is an important domain in modern agriculture. So moving towards the same vision, this research work addresses this issue of forecasting suitable crops on the basis of environmental factors and its yield based on previous data sets available on the net. The study not only discusses yield and crops, but also stresses on the amounts and types of nutrients present in the soil beforehand by using supervised machine learning algorithms. Among different models used, random forest generates the best performance. Further in the paper we will see how random forest provides us an accuracy of 93% and the least error rate of only 0.3% among all other algorithms using rainfall as a parameter to predict our desired crops.
doi_str_mv 10.1063/5.0184502
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0184502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2979202280</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-6cfad0404f1f0c7662d2711e14e8c05de462e8e760f0d72c6d1cd25a4d05d3f53</originalsourceid><addsrcrecordid>eNotkEtLw0AUhQdRsFYX_oOAOyH13nmmG0GKLyi4UMHdMMxDUpJMnJks_PemtptzF-fjHs4h5BphhSDZnVgBNlwAPSELFAJrJVGekgXAmteUs69zcpHzDoCulWoW5P49tl1lUxxzZQZXDVNJrR9KrkJM3ppc2uG7mvJe0wzE_t_Ipeqj890lOQumy_7qeJfk8-nxY_NSb9-eXzcP23pExkotbTAOOPCAAaySkjqqED1y31gQznNJfeOVhABOUSsdWkeF4W42WRBsSW4Of8cUf6Y5Xu_ilIY5Us9F1hQobWCmbg9Utm0xpY2DHlPbm_SrEfR-Hy30cR_2Bz2UVv0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2979202280</pqid></control><display><type>conference_proceeding</type><title>Soil crops and nutrients forecasting using random forest model</title><source>AIP Journals Complete</source><creator>Pranjal, Pragya ; Mallick, Saahil ; Paul, Aniket ; Mishra, Sushruta ; Bhardwaj, Indu ; Albuquerque, Victor Hugo C. de</creator><contributor>Gupta, Deepak ; Bashir, Ali Kashif ; Kaushik, Achal ; Khanna, Ashish</contributor><creatorcontrib>Pranjal, Pragya ; Mallick, Saahil ; Paul, Aniket ; Mishra, Sushruta ; Bhardwaj, Indu ; Albuquerque, Victor Hugo C. de ; Gupta, Deepak ; Bashir, Ali Kashif ; Kaushik, Achal ; Khanna, Ashish</creatorcontrib><description>Assessing type of soil and its required nutrients is an important domain in modern agriculture. So moving towards the same vision, this research work addresses this issue of forecasting suitable crops on the basis of environmental factors and its yield based on previous data sets available on the net. The study not only discusses yield and crops, but also stresses on the amounts and types of nutrients present in the soil beforehand by using supervised machine learning algorithms. Among different models used, random forest generates the best performance. Further in the paper we will see how random forest provides us an accuracy of 93% and the least error rate of only 0.3% among all other algorithms using rainfall as a parameter to predict our desired crops.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0184502</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Crops ; Forecasting ; Machine learning ; Mathematical models ; Nutrients ; Rainfall ; Soils ; Supervised learning</subject><ispartof>AIP conference proceedings, 2024, Vol.2919 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0184502$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76126</link.rule.ids></links><search><contributor>Gupta, Deepak</contributor><contributor>Bashir, Ali Kashif</contributor><contributor>Kaushik, Achal</contributor><contributor>Khanna, Ashish</contributor><creatorcontrib>Pranjal, Pragya</creatorcontrib><creatorcontrib>Mallick, Saahil</creatorcontrib><creatorcontrib>Paul, Aniket</creatorcontrib><creatorcontrib>Mishra, Sushruta</creatorcontrib><creatorcontrib>Bhardwaj, Indu</creatorcontrib><creatorcontrib>Albuquerque, Victor Hugo C. de</creatorcontrib><title>Soil crops and nutrients forecasting using random forest model</title><title>AIP conference proceedings</title><description>Assessing type of soil and its required nutrients is an important domain in modern agriculture. So moving towards the same vision, this research work addresses this issue of forecasting suitable crops on the basis of environmental factors and its yield based on previous data sets available on the net. The study not only discusses yield and crops, but also stresses on the amounts and types of nutrients present in the soil beforehand by using supervised machine learning algorithms. Among different models used, random forest generates the best performance. Further in the paper we will see how random forest provides us an accuracy of 93% and the least error rate of only 0.3% among all other algorithms using rainfall as a parameter to predict our desired crops.</description><subject>Algorithms</subject><subject>Crops</subject><subject>Forecasting</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Nutrients</subject><subject>Rainfall</subject><subject>Soils</subject><subject>Supervised learning</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEtLw0AUhQdRsFYX_oOAOyH13nmmG0GKLyi4UMHdMMxDUpJMnJks_PemtptzF-fjHs4h5BphhSDZnVgBNlwAPSELFAJrJVGekgXAmteUs69zcpHzDoCulWoW5P49tl1lUxxzZQZXDVNJrR9KrkJM3ppc2uG7mvJe0wzE_t_Ipeqj890lOQumy_7qeJfk8-nxY_NSb9-eXzcP23pExkotbTAOOPCAAaySkjqqED1y31gQznNJfeOVhABOUSsdWkeF4W42WRBsSW4Of8cUf6Y5Xu_ilIY5Us9F1hQobWCmbg9Utm0xpY2DHlPbm_SrEfR-Hy30cR_2Bz2UVv0</recordid><startdate>20240325</startdate><enddate>20240325</enddate><creator>Pranjal, Pragya</creator><creator>Mallick, Saahil</creator><creator>Paul, Aniket</creator><creator>Mishra, Sushruta</creator><creator>Bhardwaj, Indu</creator><creator>Albuquerque, Victor Hugo C. de</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240325</creationdate><title>Soil crops and nutrients forecasting using random forest model</title><author>Pranjal, Pragya ; Mallick, Saahil ; Paul, Aniket ; Mishra, Sushruta ; Bhardwaj, Indu ; Albuquerque, Victor Hugo C. de</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-6cfad0404f1f0c7662d2711e14e8c05de462e8e760f0d72c6d1cd25a4d05d3f53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Crops</topic><topic>Forecasting</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Nutrients</topic><topic>Rainfall</topic><topic>Soils</topic><topic>Supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pranjal, Pragya</creatorcontrib><creatorcontrib>Mallick, Saahil</creatorcontrib><creatorcontrib>Paul, Aniket</creatorcontrib><creatorcontrib>Mishra, Sushruta</creatorcontrib><creatorcontrib>Bhardwaj, Indu</creatorcontrib><creatorcontrib>Albuquerque, Victor Hugo C. de</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pranjal, Pragya</au><au>Mallick, Saahil</au><au>Paul, Aniket</au><au>Mishra, Sushruta</au><au>Bhardwaj, Indu</au><au>Albuquerque, Victor Hugo C. de</au><au>Gupta, Deepak</au><au>Bashir, Ali Kashif</au><au>Kaushik, Achal</au><au>Khanna, Ashish</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Soil crops and nutrients forecasting using random forest model</atitle><btitle>AIP conference proceedings</btitle><date>2024-03-25</date><risdate>2024</risdate><volume>2919</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Assessing type of soil and its required nutrients is an important domain in modern agriculture. So moving towards the same vision, this research work addresses this issue of forecasting suitable crops on the basis of environmental factors and its yield based on previous data sets available on the net. The study not only discusses yield and crops, but also stresses on the amounts and types of nutrients present in the soil beforehand by using supervised machine learning algorithms. Among different models used, random forest generates the best performance. Further in the paper we will see how random forest provides us an accuracy of 93% and the least error rate of only 0.3% among all other algorithms using rainfall as a parameter to predict our desired crops.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0184502</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.2919 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0184502
source AIP Journals Complete
subjects Algorithms
Crops
Forecasting
Machine learning
Mathematical models
Nutrients
Rainfall
Soils
Supervised learning
title Soil crops and nutrients forecasting using random forest model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A22%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Soil%20crops%20and%20nutrients%20forecasting%20using%20random%20forest%20model&rft.btitle=AIP%20conference%20proceedings&rft.au=Pranjal,%20Pragya&rft.date=2024-03-25&rft.volume=2919&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0184502&rft_dat=%3Cproquest_scita%3E2979202280%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2979202280&rft_id=info:pmid/&rfr_iscdi=true