Forecasting rainfall in Surabaya using the singular spectrum analysis method

Singular Spectrum Analysis (SSA) is a time series analysis method that uses a non-parametric approach. This study aims to determine the model and predict rainfall in Surabaya. The SSA process begins with decomposition consisting of embedding and singular value decomposition. Then a reconstruction pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Soehardjoepri, Azmi, Ulil, Safitri, Ika, Ivan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2982
creator Soehardjoepri
Azmi, Ulil
Safitri, Ika
Ivan
description Singular Spectrum Analysis (SSA) is a time series analysis method that uses a non-parametric approach. This study aims to determine the model and predict rainfall in Surabaya. The SSA process begins with decomposition consisting of embedding and singular value decomposition. Then a reconstruction process is carried out, which consists of eigentriple grouping and diagonal averaging. The determination of eigentriple grouping is based on changes in the value of the eigenvectors, which do not start much different between each eigenvector. This study will compare various window length (L) values. The best model obtained is with L = 72, MAD value is 151.9903, MSE is 32340.72, and sMAPE is 0.2679602. These results indicate that the best model will be obtained when using a maximum L, which is half of the total data or as much as 72. The results of rainfall forecasting using SSA cannot be used in the long term.
doi_str_mv 10.1063/5.0183433
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0183433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2913522944</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1683-bc84f567d8ad6817bba8bda9e56aaf02d3ee9b58f105f19d5a3c958116d821b13</originalsourceid><addsrcrecordid>eNotUE9LwzAcDaLgnB78BgFvQmd-SZMmRxlOhYEHFbyFX5rUdXRtTdLDvr0b2-k9eH94PELugS2AKfEkFwy0KIW4IDOQEopKgbokM8ZMWfBS_FyTm5S2jHFTVXpG1qshhhpTbvtfGrHtG-w62vb0c4rocI90SkcpbwI9kqnDSNMY6hynHcUeu31qE92FvBn8Lbk6xFO4O-OcfK9evpZvxfrj9X35vC5GUFoUrtZlI1XlNXqloXIOtfNoglSIDeNehGCc1A0w2YDxEkVtpAZQXnNwIObk4dQ7xuFvCinb7TDFw5ZkuQEhOTdleXA9nlypbjPmdujtGNsdxr0FZo9vWWnPb4l_Xs1cpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2913522944</pqid></control><display><type>conference_proceeding</type><title>Forecasting rainfall in Surabaya using the singular spectrum analysis method</title><source>AIP Journals Complete</source><creator>Soehardjoepri ; Azmi, Ulil ; Safitri, Ika ; Ivan</creator><contributor>Muliyati, Dewi ; Irwanto ; Rahayu, Sri ; Aziz, Tian Abdul ; Ristanto, Rizhal Hendi</contributor><creatorcontrib>Soehardjoepri ; Azmi, Ulil ; Safitri, Ika ; Ivan ; Muliyati, Dewi ; Irwanto ; Rahayu, Sri ; Aziz, Tian Abdul ; Ristanto, Rizhal Hendi</creatorcontrib><description>Singular Spectrum Analysis (SSA) is a time series analysis method that uses a non-parametric approach. This study aims to determine the model and predict rainfall in Surabaya. The SSA process begins with decomposition consisting of embedding and singular value decomposition. Then a reconstruction process is carried out, which consists of eigentriple grouping and diagonal averaging. The determination of eigentriple grouping is based on changes in the value of the eigenvectors, which do not start much different between each eigenvector. This study will compare various window length (L) values. The best model obtained is with L = 72, MAD value is 151.9903, MSE is 32340.72, and sMAPE is 0.2679602. These results indicate that the best model will be obtained when using a maximum L, which is half of the total data or as much as 72. The results of rainfall forecasting using SSA cannot be used in the long term.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0183433</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Eigenvectors ; Forecasting ; Mathematical models ; Rainfall ; Singular value decomposition ; Spectrum analysis</subject><ispartof>AIP conference proceedings, 2024, Vol.2982 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0183433$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76126</link.rule.ids></links><search><contributor>Muliyati, Dewi</contributor><contributor>Irwanto</contributor><contributor>Rahayu, Sri</contributor><contributor>Aziz, Tian Abdul</contributor><contributor>Ristanto, Rizhal Hendi</contributor><creatorcontrib>Soehardjoepri</creatorcontrib><creatorcontrib>Azmi, Ulil</creatorcontrib><creatorcontrib>Safitri, Ika</creatorcontrib><creatorcontrib>Ivan</creatorcontrib><title>Forecasting rainfall in Surabaya using the singular spectrum analysis method</title><title>AIP conference proceedings</title><description>Singular Spectrum Analysis (SSA) is a time series analysis method that uses a non-parametric approach. This study aims to determine the model and predict rainfall in Surabaya. The SSA process begins with decomposition consisting of embedding and singular value decomposition. Then a reconstruction process is carried out, which consists of eigentriple grouping and diagonal averaging. The determination of eigentriple grouping is based on changes in the value of the eigenvectors, which do not start much different between each eigenvector. This study will compare various window length (L) values. The best model obtained is with L = 72, MAD value is 151.9903, MSE is 32340.72, and sMAPE is 0.2679602. These results indicate that the best model will be obtained when using a maximum L, which is half of the total data or as much as 72. The results of rainfall forecasting using SSA cannot be used in the long term.</description><subject>Eigenvectors</subject><subject>Forecasting</subject><subject>Mathematical models</subject><subject>Rainfall</subject><subject>Singular value decomposition</subject><subject>Spectrum analysis</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotUE9LwzAcDaLgnB78BgFvQmd-SZMmRxlOhYEHFbyFX5rUdXRtTdLDvr0b2-k9eH94PELugS2AKfEkFwy0KIW4IDOQEopKgbokM8ZMWfBS_FyTm5S2jHFTVXpG1qshhhpTbvtfGrHtG-w62vb0c4rocI90SkcpbwI9kqnDSNMY6hynHcUeu31qE92FvBn8Lbk6xFO4O-OcfK9evpZvxfrj9X35vC5GUFoUrtZlI1XlNXqloXIOtfNoglSIDeNehGCc1A0w2YDxEkVtpAZQXnNwIObk4dQ7xuFvCinb7TDFw5ZkuQEhOTdleXA9nlypbjPmdujtGNsdxr0FZo9vWWnPb4l_Xs1cpA</recordid><startdate>20240112</startdate><enddate>20240112</enddate><creator>Soehardjoepri</creator><creator>Azmi, Ulil</creator><creator>Safitri, Ika</creator><creator>Ivan</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240112</creationdate><title>Forecasting rainfall in Surabaya using the singular spectrum analysis method</title><author>Soehardjoepri ; Azmi, Ulil ; Safitri, Ika ; Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1683-bc84f567d8ad6817bba8bda9e56aaf02d3ee9b58f105f19d5a3c958116d821b13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Eigenvectors</topic><topic>Forecasting</topic><topic>Mathematical models</topic><topic>Rainfall</topic><topic>Singular value decomposition</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soehardjoepri</creatorcontrib><creatorcontrib>Azmi, Ulil</creatorcontrib><creatorcontrib>Safitri, Ika</creatorcontrib><creatorcontrib>Ivan</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soehardjoepri</au><au>Azmi, Ulil</au><au>Safitri, Ika</au><au>Ivan</au><au>Muliyati, Dewi</au><au>Irwanto</au><au>Rahayu, Sri</au><au>Aziz, Tian Abdul</au><au>Ristanto, Rizhal Hendi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Forecasting rainfall in Surabaya using the singular spectrum analysis method</atitle><btitle>AIP conference proceedings</btitle><date>2024-01-12</date><risdate>2024</risdate><volume>2982</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Singular Spectrum Analysis (SSA) is a time series analysis method that uses a non-parametric approach. This study aims to determine the model and predict rainfall in Surabaya. The SSA process begins with decomposition consisting of embedding and singular value decomposition. Then a reconstruction process is carried out, which consists of eigentriple grouping and diagonal averaging. The determination of eigentriple grouping is based on changes in the value of the eigenvectors, which do not start much different between each eigenvector. This study will compare various window length (L) values. The best model obtained is with L = 72, MAD value is 151.9903, MSE is 32340.72, and sMAPE is 0.2679602. These results indicate that the best model will be obtained when using a maximum L, which is half of the total data or as much as 72. The results of rainfall forecasting using SSA cannot be used in the long term.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0183433</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.2982 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0183433
source AIP Journals Complete
subjects Eigenvectors
Forecasting
Mathematical models
Rainfall
Singular value decomposition
Spectrum analysis
title Forecasting rainfall in Surabaya using the singular spectrum analysis method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A50%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Forecasting%20rainfall%20in%20Surabaya%20using%20the%20singular%20spectrum%20analysis%20method&rft.btitle=AIP%20conference%20proceedings&rft.au=Soehardjoepri&rft.date=2024-01-12&rft.volume=2982&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0183433&rft_dat=%3Cproquest_scita%3E2913522944%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2913522944&rft_id=info:pmid/&rfr_iscdi=true