Root cube mean cordial labeling of K1,n × Pm

All the graphs considered in this article are simple and undirected. Let G = (V(G), E(G)) be a simple undirected Graph. A function f : V(G) → {0, 1, 2} is called root cube mean cordial labeling if the induced function f* : E(G) → {0, 1, 2} defined by f*(uv)=⌊ (f(u))3+(f(v))32 ⌋ satisfies the conditi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Parejiya, Jaydeep, Mundadiya, Sneha, Gandhi, Harsh, Solanki, Ramesh, Jariya, Mahesh
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2963
creator Parejiya, Jaydeep
Mundadiya, Sneha
Gandhi, Harsh
Solanki, Ramesh
Jariya, Mahesh
description All the graphs considered in this article are simple and undirected. Let G = (V(G), E(G)) be a simple undirected Graph. A function f : V(G) → {0, 1, 2} is called root cube mean cordial labeling if the induced function f* : E(G) → {0, 1, 2} defined by f*(uv)=⌊ (f(u))3+(f(v))32 ⌋ satisfies the condition |vf(i) − vf(j)| ≤ 1 and |ef(i) − ef(j)| ≤ 1 for any i,j ∈ {0,1,2} where vf(x) and ef(x) denotes the number of vertices and number of edges with label x respectively and ⌊x⌋ denotes the greatest integer less than or equals to x. A Graph G is called root cube mean cordial if it admits root cube mean cordial labeling. In this article, we have discussed root cube mean cordial labeling of the graph K1,n × Pm. The original version of this article supplied to AIP Publishing contained errors in its equations. These errors have been corrected in the new article published on 14 March 2024.
doi_str_mv 10.1063/5.0183402
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0183402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889742357</sourcerecordid><originalsourceid>FETCH-LOGICAL-p632-68a3704b6960681c1179fcb174b71974fc87fe4617d028e1b79cdfc4310eb1313</originalsourceid><addsrcrecordid>eNotkMtKxDAYRoMoWEcXvkHAndjx_5M0l6UM3nBAkVm4C0maSoe2qW1n4ZP4QL6YlZnVtzmcDw4hlwhLBMlviyWg5gLYEcmwKDBXEuUxyQCMyJngH6fkbBy3AMwopTOSv6c00bDzkbbRdTSkoaxdQxvnY1N3nzRV9AVvOvr7Q9_ac3JSuWaMF4ddkM3D_Wb1lK9fH59Xd-u8l5zlUjuuQHhpJEiNAVGZKnhUwis0SlRBqyoKiaoEpiN6ZUJZBcERokeOfEGu9tp-SF-7OE52m3ZDNz9apvVsYLxQM3W9p8ZQT26qU2f7oW7d8G0R7H8NW9hDDf4HkwZN9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2889742357</pqid></control><display><type>conference_proceeding</type><title>Root cube mean cordial labeling of K1,n × Pm</title><source>AIP Journals Complete</source><creator>Parejiya, Jaydeep ; Mundadiya, Sneha ; Gandhi, Harsh ; Solanki, Ramesh ; Jariya, Mahesh</creator><contributor>Tanna, Paresh ; Patel, Chetan ; Bhatt, Nirav</contributor><creatorcontrib>Parejiya, Jaydeep ; Mundadiya, Sneha ; Gandhi, Harsh ; Solanki, Ramesh ; Jariya, Mahesh ; Tanna, Paresh ; Patel, Chetan ; Bhatt, Nirav</creatorcontrib><description>All the graphs considered in this article are simple and undirected. Let G = (V(G), E(G)) be a simple undirected Graph. A function f : V(G) → {0, 1, 2} is called root cube mean cordial labeling if the induced function f* : E(G) → {0, 1, 2} defined by f*(uv)=⌊ (f(u))3+(f(v))32 ⌋ satisfies the condition |vf(i) − vf(j)| ≤ 1 and |ef(i) − ef(j)| ≤ 1 for any i,j ∈ {0,1,2} where vf(x) and ef(x) denotes the number of vertices and number of edges with label x respectively and ⌊x⌋ denotes the greatest integer less than or equals to x. A Graph G is called root cube mean cordial if it admits root cube mean cordial labeling. In this article, we have discussed root cube mean cordial labeling of the graph K1,n × Pm. The original version of this article supplied to AIP Publishing contained errors in its equations. These errors have been corrected in the new article published on 14 March 2024.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0183402</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Apexes ; Graph theory ; Labeling ; Labelling ; Labels</subject><ispartof>AIP Conference Proceedings, 2023, Vol.2963 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0183402$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Tanna, Paresh</contributor><contributor>Patel, Chetan</contributor><contributor>Bhatt, Nirav</contributor><creatorcontrib>Parejiya, Jaydeep</creatorcontrib><creatorcontrib>Mundadiya, Sneha</creatorcontrib><creatorcontrib>Gandhi, Harsh</creatorcontrib><creatorcontrib>Solanki, Ramesh</creatorcontrib><creatorcontrib>Jariya, Mahesh</creatorcontrib><title>Root cube mean cordial labeling of K1,n × Pm</title><title>AIP Conference Proceedings</title><description>All the graphs considered in this article are simple and undirected. Let G = (V(G), E(G)) be a simple undirected Graph. A function f : V(G) → {0, 1, 2} is called root cube mean cordial labeling if the induced function f* : E(G) → {0, 1, 2} defined by f*(uv)=⌊ (f(u))3+(f(v))32 ⌋ satisfies the condition |vf(i) − vf(j)| ≤ 1 and |ef(i) − ef(j)| ≤ 1 for any i,j ∈ {0,1,2} where vf(x) and ef(x) denotes the number of vertices and number of edges with label x respectively and ⌊x⌋ denotes the greatest integer less than or equals to x. A Graph G is called root cube mean cordial if it admits root cube mean cordial labeling. In this article, we have discussed root cube mean cordial labeling of the graph K1,n × Pm. The original version of this article supplied to AIP Publishing contained errors in its equations. These errors have been corrected in the new article published on 14 March 2024.</description><subject>Apexes</subject><subject>Graph theory</subject><subject>Labeling</subject><subject>Labelling</subject><subject>Labels</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkMtKxDAYRoMoWEcXvkHAndjx_5M0l6UM3nBAkVm4C0maSoe2qW1n4ZP4QL6YlZnVtzmcDw4hlwhLBMlviyWg5gLYEcmwKDBXEuUxyQCMyJngH6fkbBy3AMwopTOSv6c00bDzkbbRdTSkoaxdQxvnY1N3nzRV9AVvOvr7Q9_ac3JSuWaMF4ddkM3D_Wb1lK9fH59Xd-u8l5zlUjuuQHhpJEiNAVGZKnhUwis0SlRBqyoKiaoEpiN6ZUJZBcERokeOfEGu9tp-SF-7OE52m3ZDNz9apvVsYLxQM3W9p8ZQT26qU2f7oW7d8G0R7H8NW9hDDf4HkwZN9A</recordid><startdate>20231114</startdate><enddate>20231114</enddate><creator>Parejiya, Jaydeep</creator><creator>Mundadiya, Sneha</creator><creator>Gandhi, Harsh</creator><creator>Solanki, Ramesh</creator><creator>Jariya, Mahesh</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231114</creationdate><title>Root cube mean cordial labeling of K1,n × Pm</title><author>Parejiya, Jaydeep ; Mundadiya, Sneha ; Gandhi, Harsh ; Solanki, Ramesh ; Jariya, Mahesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p632-68a3704b6960681c1179fcb174b71974fc87fe4617d028e1b79cdfc4310eb1313</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Apexes</topic><topic>Graph theory</topic><topic>Labeling</topic><topic>Labelling</topic><topic>Labels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parejiya, Jaydeep</creatorcontrib><creatorcontrib>Mundadiya, Sneha</creatorcontrib><creatorcontrib>Gandhi, Harsh</creatorcontrib><creatorcontrib>Solanki, Ramesh</creatorcontrib><creatorcontrib>Jariya, Mahesh</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parejiya, Jaydeep</au><au>Mundadiya, Sneha</au><au>Gandhi, Harsh</au><au>Solanki, Ramesh</au><au>Jariya, Mahesh</au><au>Tanna, Paresh</au><au>Patel, Chetan</au><au>Bhatt, Nirav</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Root cube mean cordial labeling of K1,n × Pm</atitle><btitle>AIP Conference Proceedings</btitle><date>2023-11-14</date><risdate>2023</risdate><volume>2963</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>All the graphs considered in this article are simple and undirected. Let G = (V(G), E(G)) be a simple undirected Graph. A function f : V(G) → {0, 1, 2} is called root cube mean cordial labeling if the induced function f* : E(G) → {0, 1, 2} defined by f*(uv)=⌊ (f(u))3+(f(v))32 ⌋ satisfies the condition |vf(i) − vf(j)| ≤ 1 and |ef(i) − ef(j)| ≤ 1 for any i,j ∈ {0,1,2} where vf(x) and ef(x) denotes the number of vertices and number of edges with label x respectively and ⌊x⌋ denotes the greatest integer less than or equals to x. A Graph G is called root cube mean cordial if it admits root cube mean cordial labeling. In this article, we have discussed root cube mean cordial labeling of the graph K1,n × Pm. The original version of this article supplied to AIP Publishing contained errors in its equations. These errors have been corrected in the new article published on 14 March 2024.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0183402</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2023, Vol.2963 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0183402
source AIP Journals Complete
subjects Apexes
Graph theory
Labeling
Labelling
Labels
title Root cube mean cordial labeling of K1,n × Pm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A41%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Root%20cube%20mean%20cordial%20labeling%20of%20K1,n%20%C3%97%20Pm&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Parejiya,%20Jaydeep&rft.date=2023-11-14&rft.volume=2963&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0183402&rft_dat=%3Cproquest_scita%3E2889742357%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889742357&rft_id=info:pmid/&rfr_iscdi=true