Customizing polymeric binders for advanced lithium batteries: Design principles and beyond

As society strides toward a sustainable future powered by lithium-ion batteries, the integral role of polymeric binders becomes increasingly evident. Historically serving as a film former and chemical adhesive that amalgamates the active host materials and conductive carbon in battery electrodes, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Physics Reviews 2024-03, Vol.11 (1)
Hauptverfasser: Kang, Jieun, Kwon, Jin Yong, Han, Dong-Yeob, Park, Soojin, Ryu, Jaegeon
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Applied Physics Reviews
container_volume 11
creator Kang, Jieun
Kwon, Jin Yong
Han, Dong-Yeob
Park, Soojin
Ryu, Jaegeon
description As society strides toward a sustainable future powered by lithium-ion batteries, the integral role of polymeric binders becomes increasingly evident. Historically serving as a film former and chemical adhesive that amalgamates the active host materials and conductive carbon in battery electrodes, their role has been redefined with the advent of innovative battery systems and host materials. These emerging technologies pose unique challenges, propelling the shift toward “customizable” binder designs. Polymeric binders should now ensure structural robustness, especially for high-capacity host materials, by leveraging varied intermolecular interactions to counteract internal stresses. Additionally, incorporating high-voltage electrode materials or electrolytes demands binders with an expansive electrochemical stability window. The interface energy control of binders is also critical, especially when incorporating dissolving cathodes or transitioning to solid-state electrolytes. This review provides a comprehensive understanding, breaking down the design principles of polymeric binders into three distinct paradigms: (1) structural design for high-capacity anodes, (2) electrochemical design for high-voltage cathodes or electrolytes, and (3) interfacial design for dissolving cathodes and solid-state batteries. Our discourse offers both a reflection on the evolving multifunctional nature of binders and a roadmap for future endeavors in the binder design for advanced lithium battery chemistries.
doi_str_mv 10.1063/5.0182553
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0182553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apr</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-f907914a17f95052a12068403a8a877a6c7e4966286ddb14222e9f795940b6fb3</originalsourceid><addsrcrecordid>eNp9kDtPwzAAhC0EEqUw8A-8gpRiO7YTs6FQHlIlFlhYIj-LUeJEtosUfj1B7cDEdDd8Ot0dAJcYrTDi5Q1bIVwTxsojsMCixIWgCB__8afgLKVPhDjiHC_Ae7NLeej9tw9bOA7d1NvoNVQ-GBsTdEOE0nzJoK2Bnc8fftdDJXOeKZtu4b1NfhvgGH3QfuxsgjIYqOw0BHMOTpzskr046BK8Paxfm6di8_L43NxtCk04zYUTqBKYSlw5wRAjEhPEa4pKWcu6qiTXlaWCc1JzYxSmhBArXCXYvEZxp8oluNrn6jikFK1r5zq9jFOLUft7Ssvawykze71nk_ZZZj-Ef-AfySVhgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Customizing polymeric binders for advanced lithium batteries: Design principles and beyond</title><source>AIP Journals</source><creator>Kang, Jieun ; Kwon, Jin Yong ; Han, Dong-Yeob ; Park, Soojin ; Ryu, Jaegeon</creator><creatorcontrib>Kang, Jieun ; Kwon, Jin Yong ; Han, Dong-Yeob ; Park, Soojin ; Ryu, Jaegeon</creatorcontrib><description>As society strides toward a sustainable future powered by lithium-ion batteries, the integral role of polymeric binders becomes increasingly evident. Historically serving as a film former and chemical adhesive that amalgamates the active host materials and conductive carbon in battery electrodes, their role has been redefined with the advent of innovative battery systems and host materials. These emerging technologies pose unique challenges, propelling the shift toward “customizable” binder designs. Polymeric binders should now ensure structural robustness, especially for high-capacity host materials, by leveraging varied intermolecular interactions to counteract internal stresses. Additionally, incorporating high-voltage electrode materials or electrolytes demands binders with an expansive electrochemical stability window. The interface energy control of binders is also critical, especially when incorporating dissolving cathodes or transitioning to solid-state electrolytes. This review provides a comprehensive understanding, breaking down the design principles of polymeric binders into three distinct paradigms: (1) structural design for high-capacity anodes, (2) electrochemical design for high-voltage cathodes or electrolytes, and (3) interfacial design for dissolving cathodes and solid-state batteries. Our discourse offers both a reflection on the evolving multifunctional nature of binders and a roadmap for future endeavors in the binder design for advanced lithium battery chemistries.</description><identifier>ISSN: 1931-9401</identifier><identifier>EISSN: 1931-9401</identifier><identifier>DOI: 10.1063/5.0182553</identifier><identifier>CODEN: APRPG5</identifier><language>eng</language><ispartof>Applied Physics Reviews, 2024-03, Vol.11 (1)</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-f907914a17f95052a12068403a8a877a6c7e4966286ddb14222e9f795940b6fb3</citedby><cites>FETCH-LOGICAL-c264t-f907914a17f95052a12068403a8a877a6c7e4966286ddb14222e9f795940b6fb3</cites><orcidid>0000-0003-3878-6515 ; 0000-0003-0933-6216 ; 0000-0003-2696-3916 ; 0009-0007-5581-4721 ; 0000-0002-5290-6192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apr/article-lookup/doi/10.1063/5.0182553$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>313,314,776,780,788,790,4498,27899,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Kang, Jieun</creatorcontrib><creatorcontrib>Kwon, Jin Yong</creatorcontrib><creatorcontrib>Han, Dong-Yeob</creatorcontrib><creatorcontrib>Park, Soojin</creatorcontrib><creatorcontrib>Ryu, Jaegeon</creatorcontrib><title>Customizing polymeric binders for advanced lithium batteries: Design principles and beyond</title><title>Applied Physics Reviews</title><description>As society strides toward a sustainable future powered by lithium-ion batteries, the integral role of polymeric binders becomes increasingly evident. Historically serving as a film former and chemical adhesive that amalgamates the active host materials and conductive carbon in battery electrodes, their role has been redefined with the advent of innovative battery systems and host materials. These emerging technologies pose unique challenges, propelling the shift toward “customizable” binder designs. Polymeric binders should now ensure structural robustness, especially for high-capacity host materials, by leveraging varied intermolecular interactions to counteract internal stresses. Additionally, incorporating high-voltage electrode materials or electrolytes demands binders with an expansive electrochemical stability window. The interface energy control of binders is also critical, especially when incorporating dissolving cathodes or transitioning to solid-state electrolytes. This review provides a comprehensive understanding, breaking down the design principles of polymeric binders into three distinct paradigms: (1) structural design for high-capacity anodes, (2) electrochemical design for high-voltage cathodes or electrolytes, and (3) interfacial design for dissolving cathodes and solid-state batteries. Our discourse offers both a reflection on the evolving multifunctional nature of binders and a roadmap for future endeavors in the binder design for advanced lithium battery chemistries.</description><issn>1931-9401</issn><issn>1931-9401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAAhC0EEqUw8A-8gpRiO7YTs6FQHlIlFlhYIj-LUeJEtosUfj1B7cDEdDd8Ot0dAJcYrTDi5Q1bIVwTxsojsMCixIWgCB__8afgLKVPhDjiHC_Ae7NLeej9tw9bOA7d1NvoNVQ-GBsTdEOE0nzJoK2Bnc8fftdDJXOeKZtu4b1NfhvgGH3QfuxsgjIYqOw0BHMOTpzskr046BK8Paxfm6di8_L43NxtCk04zYUTqBKYSlw5wRAjEhPEa4pKWcu6qiTXlaWCc1JzYxSmhBArXCXYvEZxp8oluNrn6jikFK1r5zq9jFOLUft7Ssvawykze71nk_ZZZj-Ef-AfySVhgQ</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Kang, Jieun</creator><creator>Kwon, Jin Yong</creator><creator>Han, Dong-Yeob</creator><creator>Park, Soojin</creator><creator>Ryu, Jaegeon</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3878-6515</orcidid><orcidid>https://orcid.org/0000-0003-0933-6216</orcidid><orcidid>https://orcid.org/0000-0003-2696-3916</orcidid><orcidid>https://orcid.org/0009-0007-5581-4721</orcidid><orcidid>https://orcid.org/0000-0002-5290-6192</orcidid></search><sort><creationdate>202403</creationdate><title>Customizing polymeric binders for advanced lithium batteries: Design principles and beyond</title><author>Kang, Jieun ; Kwon, Jin Yong ; Han, Dong-Yeob ; Park, Soojin ; Ryu, Jaegeon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-f907914a17f95052a12068403a8a877a6c7e4966286ddb14222e9f795940b6fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Jieun</creatorcontrib><creatorcontrib>Kwon, Jin Yong</creatorcontrib><creatorcontrib>Han, Dong-Yeob</creatorcontrib><creatorcontrib>Park, Soojin</creatorcontrib><creatorcontrib>Ryu, Jaegeon</creatorcontrib><collection>CrossRef</collection><jtitle>Applied Physics Reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Jieun</au><au>Kwon, Jin Yong</au><au>Han, Dong-Yeob</au><au>Park, Soojin</au><au>Ryu, Jaegeon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Customizing polymeric binders for advanced lithium batteries: Design principles and beyond</atitle><jtitle>Applied Physics Reviews</jtitle><date>2024-03</date><risdate>2024</risdate><volume>11</volume><issue>1</issue><issn>1931-9401</issn><eissn>1931-9401</eissn><coden>APRPG5</coden><abstract>As society strides toward a sustainable future powered by lithium-ion batteries, the integral role of polymeric binders becomes increasingly evident. Historically serving as a film former and chemical adhesive that amalgamates the active host materials and conductive carbon in battery electrodes, their role has been redefined with the advent of innovative battery systems and host materials. These emerging technologies pose unique challenges, propelling the shift toward “customizable” binder designs. Polymeric binders should now ensure structural robustness, especially for high-capacity host materials, by leveraging varied intermolecular interactions to counteract internal stresses. Additionally, incorporating high-voltage electrode materials or electrolytes demands binders with an expansive electrochemical stability window. The interface energy control of binders is also critical, especially when incorporating dissolving cathodes or transitioning to solid-state electrolytes. This review provides a comprehensive understanding, breaking down the design principles of polymeric binders into three distinct paradigms: (1) structural design for high-capacity anodes, (2) electrochemical design for high-voltage cathodes or electrolytes, and (3) interfacial design for dissolving cathodes and solid-state batteries. Our discourse offers both a reflection on the evolving multifunctional nature of binders and a roadmap for future endeavors in the binder design for advanced lithium battery chemistries.</abstract><doi>10.1063/5.0182553</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0003-3878-6515</orcidid><orcidid>https://orcid.org/0000-0003-0933-6216</orcidid><orcidid>https://orcid.org/0000-0003-2696-3916</orcidid><orcidid>https://orcid.org/0009-0007-5581-4721</orcidid><orcidid>https://orcid.org/0000-0002-5290-6192</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1931-9401
ispartof Applied Physics Reviews, 2024-03, Vol.11 (1)
issn 1931-9401
1931-9401
language eng
recordid cdi_scitation_primary_10_1063_5_0182553
source AIP Journals
title Customizing polymeric binders for advanced lithium batteries: Design principles and beyond
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A33%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Customizing%20polymeric%20binders%20for%20advanced%20lithium%20batteries:%20Design%20principles%20and%20beyond&rft.jtitle=Applied%20Physics%20Reviews&rft.au=Kang,%20Jieun&rft.date=2024-03&rft.volume=11&rft.issue=1&rft.issn=1931-9401&rft.eissn=1931-9401&rft.coden=APRPG5&rft_id=info:doi/10.1063/5.0182553&rft_dat=%3Cscitation_cross%3Eapr%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true