EEG signal analysis in frequency domains for healthy and epileptic patients

One of the most common abnormal electrical activities of the brain is epileptic seizures, which reflect the abnormal behavior of brain signals, which may occur in patients of all ages. in medical management system the Electroencephalograph (EEG) signals are essential way to monitor this abnormal beh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Alwan, Ali H., Oleiwi, Zahraa Ch, Abed, Sudad Najim
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2977
creator Alwan, Ali H.
Oleiwi, Zahraa Ch
Abed, Sudad Najim
description One of the most common abnormal electrical activities of the brain is epileptic seizures, which reflect the abnormal behavior of brain signals, which may occur in patients of all ages. in medical management system the Electroencephalograph (EEG) signals are essential way to monitor this abnormal behavior to detect the epileptic seizures in aim of acting proper reaction. Analysis EEG signal in accurate way is an important step for brain diseases detection that help in extract relevant features used to classify and detect these diseases. This research produced analysis study for EEG signal in both time and frequency domain where the frequency domain contains the most relevant discriminate features. Filtering technique is used to isolates four bands (beta, theta, alpha, and delta) from EEG channel. Database of healthy and epileptic patients has been processed in time and frequency domain. Then power spectrum density (PSD) is calculated as feature to distinguish between healthy and epileptic patients. The results show that PSD for the EEG of epileptic patients is higher than PSD of EEG of healthy person.
doi_str_mv 10.1063/5.0181895
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0181895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904737192</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-6c222440775a06a48a2963aaad259d3ce6b45f3e7ccc21288e41ba445e06257b3</originalsourceid><addsrcrecordid>eNotkE9LwzAchoMoOKcHv0HAm9CZ_2mOMuoUB14UvIVf09RldG1NskO_vZXt8r6Xh5eHF6F7SlaUKP4kV4SWtDTyAi2olLTQiqpLtCDEiIIJ_n2NblLaE8KM1uUCvVfVBqfw00OHYY4phYRDj9vof4--dxNuhgOEPuF2iHjnocu7aSYb7MfQ-TEHh0fIwfc53aKrFrrk7869RF8v1ef6tdh-bN7Wz9tipJznQjnGmBBEawlEgSiBGcUBoGHSNNx5VQvZcq-dc4yysvSC1iCE9EQxqWu-RA-n3TEOs2TKdj8c4yyfLDNEaK6pYTP1eKKSC3k2HHo7xnCAOFlK7P9ZVtrzWfwP8B9a7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2904737192</pqid></control><display><type>conference_proceeding</type><title>EEG signal analysis in frequency domains for healthy and epileptic patients</title><source>AIP Journals Complete</source><creator>Alwan, Ali H. ; Oleiwi, Zahraa Ch ; Abed, Sudad Najim</creator><contributor>Aldahan, N. ; Ramadhan, Ali J.</contributor><creatorcontrib>Alwan, Ali H. ; Oleiwi, Zahraa Ch ; Abed, Sudad Najim ; Aldahan, N. ; Ramadhan, Ali J.</creatorcontrib><description>One of the most common abnormal electrical activities of the brain is epileptic seizures, which reflect the abnormal behavior of brain signals, which may occur in patients of all ages. in medical management system the Electroencephalograph (EEG) signals are essential way to monitor this abnormal behavior to detect the epileptic seizures in aim of acting proper reaction. Analysis EEG signal in accurate way is an important step for brain diseases detection that help in extract relevant features used to classify and detect these diseases. This research produced analysis study for EEG signal in both time and frequency domain where the frequency domain contains the most relevant discriminate features. Filtering technique is used to isolates four bands (beta, theta, alpha, and delta) from EEG channel. Database of healthy and epileptic patients has been processed in time and frequency domain. Then power spectrum density (PSD) is calculated as feature to distinguish between healthy and epileptic patients. The results show that PSD for the EEG of epileptic patients is higher than PSD of EEG of healthy person.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0181895</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Brain ; Convulsions &amp; seizures ; Data base management systems ; Electroencephalography ; Epilepsy ; Frequency domain analysis ; Seizures ; Signal analysis</subject><ispartof>AIP Conference Proceedings, 2023, Vol.2977 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0181895$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Aldahan, N.</contributor><contributor>Ramadhan, Ali J.</contributor><creatorcontrib>Alwan, Ali H.</creatorcontrib><creatorcontrib>Oleiwi, Zahraa Ch</creatorcontrib><creatorcontrib>Abed, Sudad Najim</creatorcontrib><title>EEG signal analysis in frequency domains for healthy and epileptic patients</title><title>AIP Conference Proceedings</title><description>One of the most common abnormal electrical activities of the brain is epileptic seizures, which reflect the abnormal behavior of brain signals, which may occur in patients of all ages. in medical management system the Electroencephalograph (EEG) signals are essential way to monitor this abnormal behavior to detect the epileptic seizures in aim of acting proper reaction. Analysis EEG signal in accurate way is an important step for brain diseases detection that help in extract relevant features used to classify and detect these diseases. This research produced analysis study for EEG signal in both time and frequency domain where the frequency domain contains the most relevant discriminate features. Filtering technique is used to isolates four bands (beta, theta, alpha, and delta) from EEG channel. Database of healthy and epileptic patients has been processed in time and frequency domain. Then power spectrum density (PSD) is calculated as feature to distinguish between healthy and epileptic patients. The results show that PSD for the EEG of epileptic patients is higher than PSD of EEG of healthy person.</description><subject>Brain</subject><subject>Convulsions &amp; seizures</subject><subject>Data base management systems</subject><subject>Electroencephalography</subject><subject>Epilepsy</subject><subject>Frequency domain analysis</subject><subject>Seizures</subject><subject>Signal analysis</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE9LwzAchoMoOKcHv0HAm9CZ_2mOMuoUB14UvIVf09RldG1NskO_vZXt8r6Xh5eHF6F7SlaUKP4kV4SWtDTyAi2olLTQiqpLtCDEiIIJ_n2NblLaE8KM1uUCvVfVBqfw00OHYY4phYRDj9vof4--dxNuhgOEPuF2iHjnocu7aSYb7MfQ-TEHh0fIwfc53aKrFrrk7869RF8v1ef6tdh-bN7Wz9tipJznQjnGmBBEawlEgSiBGcUBoGHSNNx5VQvZcq-dc4yysvSC1iCE9EQxqWu-RA-n3TEOs2TKdj8c4yyfLDNEaK6pYTP1eKKSC3k2HHo7xnCAOFlK7P9ZVtrzWfwP8B9a7w</recordid><startdate>20231222</startdate><enddate>20231222</enddate><creator>Alwan, Ali H.</creator><creator>Oleiwi, Zahraa Ch</creator><creator>Abed, Sudad Najim</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231222</creationdate><title>EEG signal analysis in frequency domains for healthy and epileptic patients</title><author>Alwan, Ali H. ; Oleiwi, Zahraa Ch ; Abed, Sudad Najim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-6c222440775a06a48a2963aaad259d3ce6b45f3e7ccc21288e41ba445e06257b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Brain</topic><topic>Convulsions &amp; seizures</topic><topic>Data base management systems</topic><topic>Electroencephalography</topic><topic>Epilepsy</topic><topic>Frequency domain analysis</topic><topic>Seizures</topic><topic>Signal analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alwan, Ali H.</creatorcontrib><creatorcontrib>Oleiwi, Zahraa Ch</creatorcontrib><creatorcontrib>Abed, Sudad Najim</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alwan, Ali H.</au><au>Oleiwi, Zahraa Ch</au><au>Abed, Sudad Najim</au><au>Aldahan, N.</au><au>Ramadhan, Ali J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>EEG signal analysis in frequency domains for healthy and epileptic patients</atitle><btitle>AIP Conference Proceedings</btitle><date>2023-12-22</date><risdate>2023</risdate><volume>2977</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>One of the most common abnormal electrical activities of the brain is epileptic seizures, which reflect the abnormal behavior of brain signals, which may occur in patients of all ages. in medical management system the Electroencephalograph (EEG) signals are essential way to monitor this abnormal behavior to detect the epileptic seizures in aim of acting proper reaction. Analysis EEG signal in accurate way is an important step for brain diseases detection that help in extract relevant features used to classify and detect these diseases. This research produced analysis study for EEG signal in both time and frequency domain where the frequency domain contains the most relevant discriminate features. Filtering technique is used to isolates four bands (beta, theta, alpha, and delta) from EEG channel. Database of healthy and epileptic patients has been processed in time and frequency domain. Then power spectrum density (PSD) is calculated as feature to distinguish between healthy and epileptic patients. The results show that PSD for the EEG of epileptic patients is higher than PSD of EEG of healthy person.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0181895</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2023, Vol.2977 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0181895
source AIP Journals Complete
subjects Brain
Convulsions & seizures
Data base management systems
Electroencephalography
Epilepsy
Frequency domain analysis
Seizures
Signal analysis
title EEG signal analysis in frequency domains for healthy and epileptic patients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A12%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=EEG%20signal%20analysis%20in%20frequency%20domains%20for%20healthy%20and%20epileptic%20patients&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Alwan,%20Ali%20H.&rft.date=2023-12-22&rft.volume=2977&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0181895&rft_dat=%3Cproquest_scita%3E2904737192%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904737192&rft_id=info:pmid/&rfr_iscdi=true