Spin model for the honeycomb NiPS 3

In the Van der Waals material NiPS 3, Ni atoms have spin S = 1 and realize a honeycomb lattice. Six sulfur atoms surround each Ni and split their d manifold into three filled and two unfilled bands. Aimed to determine the spin Hamiltonian of NiPS 3, we study its exchange mechanisms using a two-band...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2023-12, Vol.123 (24)
1. Verfasser: Mellado, Paula
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page
container_title Applied physics letters
container_volume 123
creator Mellado, Paula
description In the Van der Waals material NiPS 3, Ni atoms have spin S = 1 and realize a honeycomb lattice. Six sulfur atoms surround each Ni and split their d manifold into three filled and two unfilled bands. Aimed to determine the spin Hamiltonian of NiPS 3, we study its exchange mechanisms using a two-band half-filled Hubbard model. Hopping between d-orbitals is mediated by p orbitals of sulfur and gives rise to bilinear and biquadratic spin couplings in the limit of strong electronic correlations. The microscopic model exposed a ferromagnetic biquadratic spin interaction K 1, allowing the completion of a minimal J 1 − J 3 − K 1 spin Hamiltonian for NiPS 3. In bulk, a ferromagnetic first nearest neighbor J 1 and a more significant antiferromagnetic third nearest neighbor spin coupling J 3 agreed with the literature, while in monolayer, J 1 is positive and very small in comparison. Using a variational scheme, we found that a zig–zag antiferromagnetic order is the ground state of bulk samples. The zig–zag pattern is adjacent to commensurate and incommensurate spin spirals, which could hint at the puzzling results reported in NiPS 3 monolayers.
doi_str_mv 10.1063/5.0176703
format Article
fullrecord <record><control><sourceid>scitation</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0176703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apl</sourcerecordid><originalsourceid>FETCH-LOGICAL-s105t-7e090fe6c71ff441a0acf13987e99b9850318a07209bcea371831ffcfaa5dd4d3</originalsourceid><addsrcrecordid>eNotj81KAzEURoMoOFYXvkHAnZB6b-9kkiyl-AelFarrkMkkNNKZlMls-vZW7OrwweGDw9g9whyhoSc5B1SNArpgFYJSghD1JasAgERjJF6zm1J-TlMuiCr2sD2kgfe5C3se88inXeC7PISjz33L1-lzy-mWXUW3L-HuzBn7fn35Wr6L1ebtY_m8EgVBTkIFMBBD4xXGWNfowPmIZLQKxrRGSyDUDtQCTOuDI4WaTqaPzsmuqzuascf_3-LT5KaUB3sYU-_Go0Wwf3lW2nMe_QIc1D_M</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spin model for the honeycomb NiPS 3</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Mellado, Paula</creator><creatorcontrib>Mellado, Paula</creatorcontrib><description>In the Van der Waals material NiPS 3, Ni atoms have spin S = 1 and realize a honeycomb lattice. Six sulfur atoms surround each Ni and split their d manifold into three filled and two unfilled bands. Aimed to determine the spin Hamiltonian of NiPS 3, we study its exchange mechanisms using a two-band half-filled Hubbard model. Hopping between d-orbitals is mediated by p orbitals of sulfur and gives rise to bilinear and biquadratic spin couplings in the limit of strong electronic correlations. The microscopic model exposed a ferromagnetic biquadratic spin interaction K 1, allowing the completion of a minimal J 1 − J 3 − K 1 spin Hamiltonian for NiPS 3. In bulk, a ferromagnetic first nearest neighbor J 1 and a more significant antiferromagnetic third nearest neighbor spin coupling J 3 agreed with the literature, while in monolayer, J 1 is positive and very small in comparison. Using a variational scheme, we found that a zig–zag antiferromagnetic order is the ground state of bulk samples. The zig–zag pattern is adjacent to commensurate and incommensurate spin spirals, which could hint at the puzzling results reported in NiPS 3 monolayers.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0176703</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><ispartof>Applied physics letters, 2023-12, Vol.123 (24)</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6216-4778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0176703$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids></links><search><creatorcontrib>Mellado, Paula</creatorcontrib><title>Spin model for the honeycomb NiPS 3</title><title>Applied physics letters</title><description>In the Van der Waals material NiPS 3, Ni atoms have spin S = 1 and realize a honeycomb lattice. Six sulfur atoms surround each Ni and split their d manifold into three filled and two unfilled bands. Aimed to determine the spin Hamiltonian of NiPS 3, we study its exchange mechanisms using a two-band half-filled Hubbard model. Hopping between d-orbitals is mediated by p orbitals of sulfur and gives rise to bilinear and biquadratic spin couplings in the limit of strong electronic correlations. The microscopic model exposed a ferromagnetic biquadratic spin interaction K 1, allowing the completion of a minimal J 1 − J 3 − K 1 spin Hamiltonian for NiPS 3. In bulk, a ferromagnetic first nearest neighbor J 1 and a more significant antiferromagnetic third nearest neighbor spin coupling J 3 agreed with the literature, while in monolayer, J 1 is positive and very small in comparison. Using a variational scheme, we found that a zig–zag antiferromagnetic order is the ground state of bulk samples. The zig–zag pattern is adjacent to commensurate and incommensurate spin spirals, which could hint at the puzzling results reported in NiPS 3 monolayers.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotj81KAzEURoMoOFYXvkHAnZB6b-9kkiyl-AelFarrkMkkNNKZlMls-vZW7OrwweGDw9g9whyhoSc5B1SNArpgFYJSghD1JasAgERjJF6zm1J-TlMuiCr2sD2kgfe5C3se88inXeC7PISjz33L1-lzy-mWXUW3L-HuzBn7fn35Wr6L1ebtY_m8EgVBTkIFMBBD4xXGWNfowPmIZLQKxrRGSyDUDtQCTOuDI4WaTqaPzsmuqzuascf_3-LT5KaUB3sYU-_Go0Wwf3lW2nMe_QIc1D_M</recordid><startdate>20231211</startdate><enddate>20231211</enddate><creator>Mellado, Paula</creator><scope/><orcidid>https://orcid.org/0000-0002-6216-4778</orcidid></search><sort><creationdate>20231211</creationdate><title>Spin model for the honeycomb NiPS 3</title><author>Mellado, Paula</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s105t-7e090fe6c71ff441a0acf13987e99b9850318a07209bcea371831ffcfaa5dd4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mellado, Paula</creatorcontrib><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mellado, Paula</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin model for the honeycomb NiPS 3</atitle><jtitle>Applied physics letters</jtitle><date>2023-12-11</date><risdate>2023</risdate><volume>123</volume><issue>24</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>In the Van der Waals material NiPS 3, Ni atoms have spin S = 1 and realize a honeycomb lattice. Six sulfur atoms surround each Ni and split their d manifold into three filled and two unfilled bands. Aimed to determine the spin Hamiltonian of NiPS 3, we study its exchange mechanisms using a two-band half-filled Hubbard model. Hopping between d-orbitals is mediated by p orbitals of sulfur and gives rise to bilinear and biquadratic spin couplings in the limit of strong electronic correlations. The microscopic model exposed a ferromagnetic biquadratic spin interaction K 1, allowing the completion of a minimal J 1 − J 3 − K 1 spin Hamiltonian for NiPS 3. In bulk, a ferromagnetic first nearest neighbor J 1 and a more significant antiferromagnetic third nearest neighbor spin coupling J 3 agreed with the literature, while in monolayer, J 1 is positive and very small in comparison. Using a variational scheme, we found that a zig–zag antiferromagnetic order is the ground state of bulk samples. The zig–zag pattern is adjacent to commensurate and incommensurate spin spirals, which could hint at the puzzling results reported in NiPS 3 monolayers.</abstract><doi>10.1063/5.0176703</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6216-4778</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2023-12, Vol.123 (24)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_5_0176703
source AIP Journals Complete; Alma/SFX Local Collection
title Spin model for the honeycomb NiPS 3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A08%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin%20model%20for%20the%20honeycomb%20NiPS%203&rft.jtitle=Applied%20physics%20letters&rft.au=Mellado,%20Paula&rft.date=2023-12-11&rft.volume=123&rft.issue=24&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0176703&rft_dat=%3Cscitation%3Eapl%3C/scitation%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true