Spectral routers for snapshot multispectral imaging

Snapshot spectral imaging aims at capturing full spatial and spectral information simultaneously. It can benefit greatly from a photon-efficient spectral decomposition that does not sacrifice spatial resolution. The multispectral filter arrays that enable compact single-chip snapshot multispectral i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2023-12, Vol.123 (26)
Hauptverfasser: Catrysse, Peter B., Fan, Shanhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 26
container_start_page
container_title Applied physics letters
container_volume 123
creator Catrysse, Peter B.
Fan, Shanhui
description Snapshot spectral imaging aims at capturing full spatial and spectral information simultaneously. It can benefit greatly from a photon-efficient spectral decomposition that does not sacrifice spatial resolution. The multispectral filter arrays that enable compact single-chip snapshot multispectral imaging, however, suffer from fundamental and important limitations: low photon efficiency and low spatial resolution. Here, we introduce a spectral router for snapshot multispectral imaging to address these limitations. A spectral router routes all light incident on its entire surface directly to the photodetector of each spectral channel without need for a propagation layer between the router and the detector. Unlike filters, spectral routers do not reject light to achieve spectral selectivity and can ideally exploit 100% of the incident light. Spectral routers also break the size barrier that exists for filter arrays and can be designed with wavelength size footprint. This enables spectral routers to simultaneously provide spectral information as well as spatial information at higher spatial resolution, and can even allow them to provide spectral information without sacrificing spatial information beyond the diffraction limit. We illustrate the concept with two examples. A first spectral router covers the visible range and can achieve ideal optical efficiency for six spectral channels in a sub-micrometer footprint, which is 15 times smaller than a filter array repeat unit with the smallest Fabry–Pérot filters. The second example covers the shortwave infrared (SWIR) range with nine spectral channels and is suitable for pixels that are two times smaller than the smallest SWIR imager pixels demonstrated to date.
doi_str_mv 10.1063/5.0176587
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0176587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2906594632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-64d9b0a25ee3ff7d63150fba37f9c94b409dac5123c18132b9085dd98572a99e3</originalsourceid><addsrcrecordid>eNp90MFKAzEQBuAgCtbqwTdY8KSwdZLZJJujFKtCwYN6DtlsUre0mzXJHnx7V1qvnoaBj3-Gn5BrCgsKAu_5AqgUvJYnZEZByhIprU_JDACwFIrTc3KR0nZaOUOcEXwbnM3R7IoYxuxiKnyIRerNkD5DLvbjLnfpj3R7s-n6zSU582aX3NVxzsnH6vF9-VyuX59elg_r0rJa5lJUrWrAMO4cei9bgZSDbwxKr6yqmgpUayynDC2tKbJGQc3bVtVcMqOUwzm5OeQOMXyNLmW9DWPsp5OaKRBcVQLZpG4PysaQUnReD3F6NH5rCvq3E831sZPJ3h1ssl02uQv9P_gHXOdf-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2906594632</pqid></control><display><type>article</type><title>Spectral routers for snapshot multispectral imaging</title><source>AIP Journals Complete</source><creator>Catrysse, Peter B. ; Fan, Shanhui</creator><creatorcontrib>Catrysse, Peter B. ; Fan, Shanhui</creatorcontrib><description>Snapshot spectral imaging aims at capturing full spatial and spectral information simultaneously. It can benefit greatly from a photon-efficient spectral decomposition that does not sacrifice spatial resolution. The multispectral filter arrays that enable compact single-chip snapshot multispectral imaging, however, suffer from fundamental and important limitations: low photon efficiency and low spatial resolution. Here, we introduce a spectral router for snapshot multispectral imaging to address these limitations. A spectral router routes all light incident on its entire surface directly to the photodetector of each spectral channel without need for a propagation layer between the router and the detector. Unlike filters, spectral routers do not reject light to achieve spectral selectivity and can ideally exploit 100% of the incident light. Spectral routers also break the size barrier that exists for filter arrays and can be designed with wavelength size footprint. This enables spectral routers to simultaneously provide spectral information as well as spatial information at higher spatial resolution, and can even allow them to provide spectral information without sacrificing spatial information beyond the diffraction limit. We illustrate the concept with two examples. A first spectral router covers the visible range and can achieve ideal optical efficiency for six spectral channels in a sub-micrometer footprint, which is 15 times smaller than a filter array repeat unit with the smallest Fabry–Pérot filters. The second example covers the shortwave infrared (SWIR) range with nine spectral channels and is suitable for pixels that are two times smaller than the smallest SWIR imager pixels demonstrated to date.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0176587</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Arrays ; Channels ; Fabry-Perot filters ; Footprints ; Imaging ; Incident light ; Photons ; Pixels ; Routers ; Short wave radiation ; Spatial data ; Spatial resolution</subject><ispartof>Applied physics letters, 2023-12, Vol.123 (26)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-64d9b0a25ee3ff7d63150fba37f9c94b409dac5123c18132b9085dd98572a99e3</cites><orcidid>0000-0002-0081-9732 ; 0000-0002-2389-6044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0176587$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,4513,27929,27930,76389</link.rule.ids></links><search><creatorcontrib>Catrysse, Peter B.</creatorcontrib><creatorcontrib>Fan, Shanhui</creatorcontrib><title>Spectral routers for snapshot multispectral imaging</title><title>Applied physics letters</title><description>Snapshot spectral imaging aims at capturing full spatial and spectral information simultaneously. It can benefit greatly from a photon-efficient spectral decomposition that does not sacrifice spatial resolution. The multispectral filter arrays that enable compact single-chip snapshot multispectral imaging, however, suffer from fundamental and important limitations: low photon efficiency and low spatial resolution. Here, we introduce a spectral router for snapshot multispectral imaging to address these limitations. A spectral router routes all light incident on its entire surface directly to the photodetector of each spectral channel without need for a propagation layer between the router and the detector. Unlike filters, spectral routers do not reject light to achieve spectral selectivity and can ideally exploit 100% of the incident light. Spectral routers also break the size barrier that exists for filter arrays and can be designed with wavelength size footprint. This enables spectral routers to simultaneously provide spectral information as well as spatial information at higher spatial resolution, and can even allow them to provide spectral information without sacrificing spatial information beyond the diffraction limit. We illustrate the concept with two examples. A first spectral router covers the visible range and can achieve ideal optical efficiency for six spectral channels in a sub-micrometer footprint, which is 15 times smaller than a filter array repeat unit with the smallest Fabry–Pérot filters. The second example covers the shortwave infrared (SWIR) range with nine spectral channels and is suitable for pixels that are two times smaller than the smallest SWIR imager pixels demonstrated to date.</description><subject>Applied physics</subject><subject>Arrays</subject><subject>Channels</subject><subject>Fabry-Perot filters</subject><subject>Footprints</subject><subject>Imaging</subject><subject>Incident light</subject><subject>Photons</subject><subject>Pixels</subject><subject>Routers</subject><subject>Short wave radiation</subject><subject>Spatial data</subject><subject>Spatial resolution</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90MFKAzEQBuAgCtbqwTdY8KSwdZLZJJujFKtCwYN6DtlsUre0mzXJHnx7V1qvnoaBj3-Gn5BrCgsKAu_5AqgUvJYnZEZByhIprU_JDACwFIrTc3KR0nZaOUOcEXwbnM3R7IoYxuxiKnyIRerNkD5DLvbjLnfpj3R7s-n6zSU582aX3NVxzsnH6vF9-VyuX59elg_r0rJa5lJUrWrAMO4cei9bgZSDbwxKr6yqmgpUayynDC2tKbJGQc3bVtVcMqOUwzm5OeQOMXyNLmW9DWPsp5OaKRBcVQLZpG4PysaQUnReD3F6NH5rCvq3E831sZPJ3h1ssl02uQv9P_gHXOdf-A</recordid><startdate>20231225</startdate><enddate>20231225</enddate><creator>Catrysse, Peter B.</creator><creator>Fan, Shanhui</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0081-9732</orcidid><orcidid>https://orcid.org/0000-0002-2389-6044</orcidid></search><sort><creationdate>20231225</creationdate><title>Spectral routers for snapshot multispectral imaging</title><author>Catrysse, Peter B. ; Fan, Shanhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-64d9b0a25ee3ff7d63150fba37f9c94b409dac5123c18132b9085dd98572a99e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Arrays</topic><topic>Channels</topic><topic>Fabry-Perot filters</topic><topic>Footprints</topic><topic>Imaging</topic><topic>Incident light</topic><topic>Photons</topic><topic>Pixels</topic><topic>Routers</topic><topic>Short wave radiation</topic><topic>Spatial data</topic><topic>Spatial resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Catrysse, Peter B.</creatorcontrib><creatorcontrib>Fan, Shanhui</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Catrysse, Peter B.</au><au>Fan, Shanhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral routers for snapshot multispectral imaging</atitle><jtitle>Applied physics letters</jtitle><date>2023-12-25</date><risdate>2023</risdate><volume>123</volume><issue>26</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Snapshot spectral imaging aims at capturing full spatial and spectral information simultaneously. It can benefit greatly from a photon-efficient spectral decomposition that does not sacrifice spatial resolution. The multispectral filter arrays that enable compact single-chip snapshot multispectral imaging, however, suffer from fundamental and important limitations: low photon efficiency and low spatial resolution. Here, we introduce a spectral router for snapshot multispectral imaging to address these limitations. A spectral router routes all light incident on its entire surface directly to the photodetector of each spectral channel without need for a propagation layer between the router and the detector. Unlike filters, spectral routers do not reject light to achieve spectral selectivity and can ideally exploit 100% of the incident light. Spectral routers also break the size barrier that exists for filter arrays and can be designed with wavelength size footprint. This enables spectral routers to simultaneously provide spectral information as well as spatial information at higher spatial resolution, and can even allow them to provide spectral information without sacrificing spatial information beyond the diffraction limit. We illustrate the concept with two examples. A first spectral router covers the visible range and can achieve ideal optical efficiency for six spectral channels in a sub-micrometer footprint, which is 15 times smaller than a filter array repeat unit with the smallest Fabry–Pérot filters. The second example covers the shortwave infrared (SWIR) range with nine spectral channels and is suitable for pixels that are two times smaller than the smallest SWIR imager pixels demonstrated to date.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0176587</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0081-9732</orcidid><orcidid>https://orcid.org/0000-0002-2389-6044</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2023-12, Vol.123 (26)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_5_0176587
source AIP Journals Complete
subjects Applied physics
Arrays
Channels
Fabry-Perot filters
Footprints
Imaging
Incident light
Photons
Pixels
Routers
Short wave radiation
Spatial data
Spatial resolution
title Spectral routers for snapshot multispectral imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T19%3A34%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20routers%20for%20snapshot%20multispectral%20imaging&rft.jtitle=Applied%20physics%20letters&rft.au=Catrysse,%20Peter%20B.&rft.date=2023-12-25&rft.volume=123&rft.issue=26&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0176587&rft_dat=%3Cproquest_scita%3E2906594632%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2906594632&rft_id=info:pmid/&rfr_iscdi=true