An implicit electrolyte model for plane wave density functional theory exhibiting nonlinear response and a nonlocal cavity definition

We have developed and implemented an implicit electrolyte model in the Vienna Ab initio Simulation Package (VASP) that includes nonlinear dielectric and ionic responses as well as a nonlocal definition of the cavities defining the spatial regions where these responses can occur. The implementation i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2023-12, Vol.159 (23)
Hauptverfasser: Islam, S. M. Rezwanul, Khezeli, Foroogh, Ringe, Stefan, Plaisance, Craig
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page
container_title The Journal of chemical physics
container_volume 159
creator Islam, S. M. Rezwanul
Khezeli, Foroogh
Ringe, Stefan
Plaisance, Craig
description We have developed and implemented an implicit electrolyte model in the Vienna Ab initio Simulation Package (VASP) that includes nonlinear dielectric and ionic responses as well as a nonlocal definition of the cavities defining the spatial regions where these responses can occur. The implementation into the existing VASPsol code is numerically efficient and exhibits robust convergence, requiring computational effort only slightly higher than the original linear polarizable continuum model. The nonlinear + nonlocal model is able to reproduce the characteristic “double hump” shape observed experimentally for the differential capacitance of an electrified metal interface while preventing “leakage” of the electrolyte into regions of space too small to contain a single water molecule or solvated ion. The model also gives a reasonable prediction of molecular solvation free energies as well as the self-ionization free energy of water and the absolute electron chemical potential of the standard hydrogen electrode. All of this, combined with the additional ability to run constant potential density functional theory calculations, should enable the routine computation of activation barriers for electrocatalytic processes.
doi_str_mv 10.1063/5.0176308
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0176308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904158484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-6931819e4e550171942d9b733c6a509b73236818184ab95f37ab7fc25134c1f03</originalsourceid><addsrcrecordid>eNp90U1vFSEUBmBiNPZaXfgHDIkbNZkKw8fAsmn8aNKkm7qeMMwZS8PACEz1_gD_d5neqwsXriDh4U3OeRF6TckZJZJ9FGeEdpIR9QTtKFG66aQmT9GOkJY2WhJ5gl7kfEdIZS1_jk6YorQVpNuh3-cBu3nxzrqCwYMtKfp9ATzHETyeYsKLNwHwT3MPeISQXdnjaQ22uBiMx-UWYtpj-HXrBldc-I5DDN4FMAknyEsMGbAJIzaPD9HWP9bcbykjTC64LeclejYZn-HV8TxF3z5_urn42lxdf7m8OL9qLOOqNFIzqqgGDkLUUajm7aiHjjErjSDbrWVSVaK4GbSYWGeGbrKtoIxbOhF2it4dcpcUf6yQSz-7bMFvE8Y1960mnArFFa_07T_0Lq6pTvyomNSd5l1V7w_KpphzgqlfkptN2veU9Fs3veiP3VT75pi4DjOMf-WfMir4cAC5lmG2vfwn7QGmqpbY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2903697947</pqid></control><display><type>article</type><title>An implicit electrolyte model for plane wave density functional theory exhibiting nonlinear response and a nonlocal cavity definition</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Islam, S. M. Rezwanul ; Khezeli, Foroogh ; Ringe, Stefan ; Plaisance, Craig</creator><creatorcontrib>Islam, S. M. Rezwanul ; Khezeli, Foroogh ; Ringe, Stefan ; Plaisance, Craig</creatorcontrib><description>We have developed and implemented an implicit electrolyte model in the Vienna Ab initio Simulation Package (VASP) that includes nonlinear dielectric and ionic responses as well as a nonlocal definition of the cavities defining the spatial regions where these responses can occur. The implementation into the existing VASPsol code is numerically efficient and exhibits robust convergence, requiring computational effort only slightly higher than the original linear polarizable continuum model. The nonlinear + nonlocal model is able to reproduce the characteristic “double hump” shape observed experimentally for the differential capacitance of an electrified metal interface while preventing “leakage” of the electrolyte into regions of space too small to contain a single water molecule or solvated ion. The model also gives a reasonable prediction of molecular solvation free energies as well as the self-ionization free energy of water and the absolute electron chemical potential of the standard hydrogen electrode. All of this, combined with the additional ability to run constant potential density functional theory calculations, should enable the routine computation of activation barriers for electrocatalytic processes.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0176308</identifier><identifier>PMID: 38112507</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Chemical potential ; Computational chemistry ; Continuum modeling ; Density functional theory ; Electrolytes ; Free energy ; Holes ; Nonlinear response ; Plane waves ; Robustness (mathematics) ; Solvation ; Water chemistry</subject><ispartof>The Journal of chemical physics, 2023-12, Vol.159 (23)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-6931819e4e550171942d9b733c6a509b73236818184ab95f37ab7fc25134c1f03</citedby><cites>FETCH-LOGICAL-c348t-6931819e4e550171942d9b733c6a509b73236818184ab95f37ab7fc25134c1f03</cites><orcidid>0000-0002-8490-6277 ; 0009-0006-5588-7149 ; 0000-0002-7804-1406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0176308$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76353</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38112507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Islam, S. M. Rezwanul</creatorcontrib><creatorcontrib>Khezeli, Foroogh</creatorcontrib><creatorcontrib>Ringe, Stefan</creatorcontrib><creatorcontrib>Plaisance, Craig</creatorcontrib><title>An implicit electrolyte model for plane wave density functional theory exhibiting nonlinear response and a nonlocal cavity definition</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We have developed and implemented an implicit electrolyte model in the Vienna Ab initio Simulation Package (VASP) that includes nonlinear dielectric and ionic responses as well as a nonlocal definition of the cavities defining the spatial regions where these responses can occur. The implementation into the existing VASPsol code is numerically efficient and exhibits robust convergence, requiring computational effort only slightly higher than the original linear polarizable continuum model. The nonlinear + nonlocal model is able to reproduce the characteristic “double hump” shape observed experimentally for the differential capacitance of an electrified metal interface while preventing “leakage” of the electrolyte into regions of space too small to contain a single water molecule or solvated ion. The model also gives a reasonable prediction of molecular solvation free energies as well as the self-ionization free energy of water and the absolute electron chemical potential of the standard hydrogen electrode. All of this, combined with the additional ability to run constant potential density functional theory calculations, should enable the routine computation of activation barriers for electrocatalytic processes.</description><subject>Chemical potential</subject><subject>Computational chemistry</subject><subject>Continuum modeling</subject><subject>Density functional theory</subject><subject>Electrolytes</subject><subject>Free energy</subject><subject>Holes</subject><subject>Nonlinear response</subject><subject>Plane waves</subject><subject>Robustness (mathematics)</subject><subject>Solvation</subject><subject>Water chemistry</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90U1vFSEUBmBiNPZaXfgHDIkbNZkKw8fAsmn8aNKkm7qeMMwZS8PACEz1_gD_d5neqwsXriDh4U3OeRF6TckZJZJ9FGeEdpIR9QTtKFG66aQmT9GOkJY2WhJ5gl7kfEdIZS1_jk6YorQVpNuh3-cBu3nxzrqCwYMtKfp9ATzHETyeYsKLNwHwT3MPeISQXdnjaQ22uBiMx-UWYtpj-HXrBldc-I5DDN4FMAknyEsMGbAJIzaPD9HWP9bcbykjTC64LeclejYZn-HV8TxF3z5_urn42lxdf7m8OL9qLOOqNFIzqqgGDkLUUajm7aiHjjErjSDbrWVSVaK4GbSYWGeGbrKtoIxbOhF2it4dcpcUf6yQSz-7bMFvE8Y1960mnArFFa_07T_0Lq6pTvyomNSd5l1V7w_KpphzgqlfkptN2veU9Fs3veiP3VT75pi4DjOMf-WfMir4cAC5lmG2vfwn7QGmqpbY</recordid><startdate>20231221</startdate><enddate>20231221</enddate><creator>Islam, S. M. Rezwanul</creator><creator>Khezeli, Foroogh</creator><creator>Ringe, Stefan</creator><creator>Plaisance, Craig</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8490-6277</orcidid><orcidid>https://orcid.org/0009-0006-5588-7149</orcidid><orcidid>https://orcid.org/0000-0002-7804-1406</orcidid></search><sort><creationdate>20231221</creationdate><title>An implicit electrolyte model for plane wave density functional theory exhibiting nonlinear response and a nonlocal cavity definition</title><author>Islam, S. M. Rezwanul ; Khezeli, Foroogh ; Ringe, Stefan ; Plaisance, Craig</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-6931819e4e550171942d9b733c6a509b73236818184ab95f37ab7fc25134c1f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical potential</topic><topic>Computational chemistry</topic><topic>Continuum modeling</topic><topic>Density functional theory</topic><topic>Electrolytes</topic><topic>Free energy</topic><topic>Holes</topic><topic>Nonlinear response</topic><topic>Plane waves</topic><topic>Robustness (mathematics)</topic><topic>Solvation</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Islam, S. M. Rezwanul</creatorcontrib><creatorcontrib>Khezeli, Foroogh</creatorcontrib><creatorcontrib>Ringe, Stefan</creatorcontrib><creatorcontrib>Plaisance, Craig</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Islam, S. M. Rezwanul</au><au>Khezeli, Foroogh</au><au>Ringe, Stefan</au><au>Plaisance, Craig</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An implicit electrolyte model for plane wave density functional theory exhibiting nonlinear response and a nonlocal cavity definition</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2023-12-21</date><risdate>2023</risdate><volume>159</volume><issue>23</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We have developed and implemented an implicit electrolyte model in the Vienna Ab initio Simulation Package (VASP) that includes nonlinear dielectric and ionic responses as well as a nonlocal definition of the cavities defining the spatial regions where these responses can occur. The implementation into the existing VASPsol code is numerically efficient and exhibits robust convergence, requiring computational effort only slightly higher than the original linear polarizable continuum model. The nonlinear + nonlocal model is able to reproduce the characteristic “double hump” shape observed experimentally for the differential capacitance of an electrified metal interface while preventing “leakage” of the electrolyte into regions of space too small to contain a single water molecule or solvated ion. The model also gives a reasonable prediction of molecular solvation free energies as well as the self-ionization free energy of water and the absolute electron chemical potential of the standard hydrogen electrode. All of this, combined with the additional ability to run constant potential density functional theory calculations, should enable the routine computation of activation barriers for electrocatalytic processes.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>38112507</pmid><doi>10.1063/5.0176308</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-8490-6277</orcidid><orcidid>https://orcid.org/0009-0006-5588-7149</orcidid><orcidid>https://orcid.org/0000-0002-7804-1406</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2023-12, Vol.159 (23)
issn 0021-9606
1089-7690
language eng
recordid cdi_scitation_primary_10_1063_5_0176308
source AIP Journals Complete; Alma/SFX Local Collection
subjects Chemical potential
Computational chemistry
Continuum modeling
Density functional theory
Electrolytes
Free energy
Holes
Nonlinear response
Plane waves
Robustness (mathematics)
Solvation
Water chemistry
title An implicit electrolyte model for plane wave density functional theory exhibiting nonlinear response and a nonlocal cavity definition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A17%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20implicit%20electrolyte%20model%20for%20plane%20wave%20density%20functional%20theory%20exhibiting%20nonlinear%20response%20and%20a%20nonlocal%20cavity%20definition&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Islam,%20S.%20M.%20Rezwanul&rft.date=2023-12-21&rft.volume=159&rft.issue=23&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0176308&rft_dat=%3Cproquest_scita%3E2904158484%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2903697947&rft_id=info:pmid/38112507&rfr_iscdi=true