Tilted magnetic anisotropy-tailored spin torque nano-oscillators for neuromorphic computing

Spin torque nano-oscillators (STNOs) hold significant promise for communication and bio-inspired computing applications. However, their modulation capability is constrained by a dilemma between frequency window and linewidth reduction, particularly in hypercritical conditions like the presence of an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2023-11, Vol.123 (20)
Hauptverfasser: Wang, Ziwei, Wang, Di, Liu, Long, Jiang, Sheng, Chai, Guozhi, Cao, Jiangwei, Xing, Guozhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page
container_title Applied physics letters
container_volume 123
creator Wang, Ziwei
Wang, Di
Liu, Long
Jiang, Sheng
Chai, Guozhi
Cao, Jiangwei
Xing, Guozhong
description Spin torque nano-oscillators (STNOs) hold significant promise for communication and bio-inspired computing applications. However, their modulation capability is constrained by a dilemma between frequency window and linewidth reduction, particularly in hypercritical conditions like the presence of an external magnetic field. This poses a notable challenge in the practical application of STNOs. Here, we report a unique type of all-electrical compact STNOs that employ the tilted magnetic anisotropy (TMA), which can efficiently promote the linewidth Δf reduction and precisely modulate oscillation frequency ranging from 495 to 556 MHz. The developed STNOs consist of a ferromagnetic reference layer with tunable TMA, wherein the spin transfer torque along the tilted spin polarization direction elaborates a self-oscillation of magnetic moments in the free layer without application of magnetic field. The free layer equips in a magnetic droplet oscillation mode, and the oscillation frequency can be modulated either synergistically or independently by varying the current intensity and/or the TMA angle. Nevertheless, the TMA angle primarily governs the deformation of the magnetic droplet and the corresponding oscillation frequency and linewidth. Moreover, a unique 4 × 4 STNO array with optimized input current and TMA configuration is proposed to execute the reservoir computing hardware training based on nonlinear dynamic oscillation phase-coupling characteristics, promising a diverse synchronization map with high kernel quality and low generation rank for highly reliable pattern classification implementation. The developed STNOs possess a simple structure, nonlinearity, high frequency tunability, and compatibility with CMOS processes, enabling them a fundamental component for large-scale integration of advanced hardware in neuromorphic computing.
doi_str_mv 10.1063/5.0175446
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0175446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889442118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-30fdbb0df1cf32d9c7cf10438db8e9031e264aa7684d1c3ab564f2d78144a7343</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4A8isQIpxa_EzhJVvKRKbMqKheX4UVwldrCdRf8eo3bNajQzR3fuXABuEVwh2JLHZgURayhtz8ACQcZqghA_BwsIIanbrkGX4CqlfWkbTMgCfG3dkI2uRrnzJjtVSe9SyDFMhzpLN4RYlmlyvsoh_sym8tKHOiTlhkGWUapsiJU3cwxjiNN3UVBhnObs_O4aXFg5JHNzqkvw-fK8Xb_Vm4_X9_XTplYEs1wTaHXfQ22RsgTrTjFlEaSE656bDhJkcEulZC2nGiki-6alFmvGEaWSEUqW4O6oO8VQLKYs9mGOvpwUmPOOUlwyKNT9kVIxpBSNFVN0o4wHgaD4y0404pRdYR-ObPkzy-yC_wf-Bapjb98</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889442118</pqid></control><display><type>article</type><title>Tilted magnetic anisotropy-tailored spin torque nano-oscillators for neuromorphic computing</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wang, Ziwei ; Wang, Di ; Liu, Long ; Jiang, Sheng ; Chai, Guozhi ; Cao, Jiangwei ; Xing, Guozhong</creator><creatorcontrib>Wang, Ziwei ; Wang, Di ; Liu, Long ; Jiang, Sheng ; Chai, Guozhi ; Cao, Jiangwei ; Xing, Guozhong</creatorcontrib><description>Spin torque nano-oscillators (STNOs) hold significant promise for communication and bio-inspired computing applications. However, their modulation capability is constrained by a dilemma between frequency window and linewidth reduction, particularly in hypercritical conditions like the presence of an external magnetic field. This poses a notable challenge in the practical application of STNOs. Here, we report a unique type of all-electrical compact STNOs that employ the tilted magnetic anisotropy (TMA), which can efficiently promote the linewidth Δf reduction and precisely modulate oscillation frequency ranging from 495 to 556 MHz. The developed STNOs consist of a ferromagnetic reference layer with tunable TMA, wherein the spin transfer torque along the tilted spin polarization direction elaborates a self-oscillation of magnetic moments in the free layer without application of magnetic field. The free layer equips in a magnetic droplet oscillation mode, and the oscillation frequency can be modulated either synergistically or independently by varying the current intensity and/or the TMA angle. Nevertheless, the TMA angle primarily governs the deformation of the magnetic droplet and the corresponding oscillation frequency and linewidth. Moreover, a unique 4 × 4 STNO array with optimized input current and TMA configuration is proposed to execute the reservoir computing hardware training based on nonlinear dynamic oscillation phase-coupling characteristics, promising a diverse synchronization map with high kernel quality and low generation rank for highly reliable pattern classification implementation. The developed STNOs possess a simple structure, nonlinearity, high frequency tunability, and compatibility with CMOS processes, enabling them a fundamental component for large-scale integration of advanced hardware in neuromorphic computing.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0175446</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Droplets ; Ferromagnetism ; Hardware ; Magnetic anisotropy ; Magnetic fields ; Magnetic moments ; Neuromorphic computing ; Nonlinear dynamics ; Nonlinearity ; Oscillation modes ; Oscillators ; Pattern classification ; Polarization (spin alignment) ; Reduction ; Self oscillation ; Synchronism ; Torque</subject><ispartof>Applied physics letters, 2023-11, Vol.123 (20)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-30fdbb0df1cf32d9c7cf10438db8e9031e264aa7684d1c3ab564f2d78144a7343</citedby><cites>FETCH-LOGICAL-c327t-30fdbb0df1cf32d9c7cf10438db8e9031e264aa7684d1c3ab564f2d78144a7343</cites><orcidid>0000-0001-6147-5710 ; 0000-0003-1757-2083 ; 0000-0003-4242-1877 ; 0000-0002-0598-266X ; 0000-0002-0618-1960 ; 0000-0003-0642-8203 ; 0000-0002-4372-9390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0175446$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76131</link.rule.ids></links><search><creatorcontrib>Wang, Ziwei</creatorcontrib><creatorcontrib>Wang, Di</creatorcontrib><creatorcontrib>Liu, Long</creatorcontrib><creatorcontrib>Jiang, Sheng</creatorcontrib><creatorcontrib>Chai, Guozhi</creatorcontrib><creatorcontrib>Cao, Jiangwei</creatorcontrib><creatorcontrib>Xing, Guozhong</creatorcontrib><title>Tilted magnetic anisotropy-tailored spin torque nano-oscillators for neuromorphic computing</title><title>Applied physics letters</title><description>Spin torque nano-oscillators (STNOs) hold significant promise for communication and bio-inspired computing applications. However, their modulation capability is constrained by a dilemma between frequency window and linewidth reduction, particularly in hypercritical conditions like the presence of an external magnetic field. This poses a notable challenge in the practical application of STNOs. Here, we report a unique type of all-electrical compact STNOs that employ the tilted magnetic anisotropy (TMA), which can efficiently promote the linewidth Δf reduction and precisely modulate oscillation frequency ranging from 495 to 556 MHz. The developed STNOs consist of a ferromagnetic reference layer with tunable TMA, wherein the spin transfer torque along the tilted spin polarization direction elaborates a self-oscillation of magnetic moments in the free layer without application of magnetic field. The free layer equips in a magnetic droplet oscillation mode, and the oscillation frequency can be modulated either synergistically or independently by varying the current intensity and/or the TMA angle. Nevertheless, the TMA angle primarily governs the deformation of the magnetic droplet and the corresponding oscillation frequency and linewidth. Moreover, a unique 4 × 4 STNO array with optimized input current and TMA configuration is proposed to execute the reservoir computing hardware training based on nonlinear dynamic oscillation phase-coupling characteristics, promising a diverse synchronization map with high kernel quality and low generation rank for highly reliable pattern classification implementation. The developed STNOs possess a simple structure, nonlinearity, high frequency tunability, and compatibility with CMOS processes, enabling them a fundamental component for large-scale integration of advanced hardware in neuromorphic computing.</description><subject>Applied physics</subject><subject>Droplets</subject><subject>Ferromagnetism</subject><subject>Hardware</subject><subject>Magnetic anisotropy</subject><subject>Magnetic fields</subject><subject>Magnetic moments</subject><subject>Neuromorphic computing</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><subject>Oscillation modes</subject><subject>Oscillators</subject><subject>Pattern classification</subject><subject>Polarization (spin alignment)</subject><subject>Reduction</subject><subject>Self oscillation</subject><subject>Synchronism</subject><subject>Torque</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqWw4A8isQIpxa_EzhJVvKRKbMqKheX4UVwldrCdRf8eo3bNajQzR3fuXABuEVwh2JLHZgURayhtz8ACQcZqghA_BwsIIanbrkGX4CqlfWkbTMgCfG3dkI2uRrnzJjtVSe9SyDFMhzpLN4RYlmlyvsoh_sym8tKHOiTlhkGWUapsiJU3cwxjiNN3UVBhnObs_O4aXFg5JHNzqkvw-fK8Xb_Vm4_X9_XTplYEs1wTaHXfQ22RsgTrTjFlEaSE656bDhJkcEulZC2nGiki-6alFmvGEaWSEUqW4O6oO8VQLKYs9mGOvpwUmPOOUlwyKNT9kVIxpBSNFVN0o4wHgaD4y0404pRdYR-ObPkzy-yC_wf-Bapjb98</recordid><startdate>20231113</startdate><enddate>20231113</enddate><creator>Wang, Ziwei</creator><creator>Wang, Di</creator><creator>Liu, Long</creator><creator>Jiang, Sheng</creator><creator>Chai, Guozhi</creator><creator>Cao, Jiangwei</creator><creator>Xing, Guozhong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6147-5710</orcidid><orcidid>https://orcid.org/0000-0003-1757-2083</orcidid><orcidid>https://orcid.org/0000-0003-4242-1877</orcidid><orcidid>https://orcid.org/0000-0002-0598-266X</orcidid><orcidid>https://orcid.org/0000-0002-0618-1960</orcidid><orcidid>https://orcid.org/0000-0003-0642-8203</orcidid><orcidid>https://orcid.org/0000-0002-4372-9390</orcidid></search><sort><creationdate>20231113</creationdate><title>Tilted magnetic anisotropy-tailored spin torque nano-oscillators for neuromorphic computing</title><author>Wang, Ziwei ; Wang, Di ; Liu, Long ; Jiang, Sheng ; Chai, Guozhi ; Cao, Jiangwei ; Xing, Guozhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-30fdbb0df1cf32d9c7cf10438db8e9031e264aa7684d1c3ab564f2d78144a7343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Droplets</topic><topic>Ferromagnetism</topic><topic>Hardware</topic><topic>Magnetic anisotropy</topic><topic>Magnetic fields</topic><topic>Magnetic moments</topic><topic>Neuromorphic computing</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><topic>Oscillation modes</topic><topic>Oscillators</topic><topic>Pattern classification</topic><topic>Polarization (spin alignment)</topic><topic>Reduction</topic><topic>Self oscillation</topic><topic>Synchronism</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ziwei</creatorcontrib><creatorcontrib>Wang, Di</creatorcontrib><creatorcontrib>Liu, Long</creatorcontrib><creatorcontrib>Jiang, Sheng</creatorcontrib><creatorcontrib>Chai, Guozhi</creatorcontrib><creatorcontrib>Cao, Jiangwei</creatorcontrib><creatorcontrib>Xing, Guozhong</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ziwei</au><au>Wang, Di</au><au>Liu, Long</au><au>Jiang, Sheng</au><au>Chai, Guozhi</au><au>Cao, Jiangwei</au><au>Xing, Guozhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tilted magnetic anisotropy-tailored spin torque nano-oscillators for neuromorphic computing</atitle><jtitle>Applied physics letters</jtitle><date>2023-11-13</date><risdate>2023</risdate><volume>123</volume><issue>20</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Spin torque nano-oscillators (STNOs) hold significant promise for communication and bio-inspired computing applications. However, their modulation capability is constrained by a dilemma between frequency window and linewidth reduction, particularly in hypercritical conditions like the presence of an external magnetic field. This poses a notable challenge in the practical application of STNOs. Here, we report a unique type of all-electrical compact STNOs that employ the tilted magnetic anisotropy (TMA), which can efficiently promote the linewidth Δf reduction and precisely modulate oscillation frequency ranging from 495 to 556 MHz. The developed STNOs consist of a ferromagnetic reference layer with tunable TMA, wherein the spin transfer torque along the tilted spin polarization direction elaborates a self-oscillation of magnetic moments in the free layer without application of magnetic field. The free layer equips in a magnetic droplet oscillation mode, and the oscillation frequency can be modulated either synergistically or independently by varying the current intensity and/or the TMA angle. Nevertheless, the TMA angle primarily governs the deformation of the magnetic droplet and the corresponding oscillation frequency and linewidth. Moreover, a unique 4 × 4 STNO array with optimized input current and TMA configuration is proposed to execute the reservoir computing hardware training based on nonlinear dynamic oscillation phase-coupling characteristics, promising a diverse synchronization map with high kernel quality and low generation rank for highly reliable pattern classification implementation. The developed STNOs possess a simple structure, nonlinearity, high frequency tunability, and compatibility with CMOS processes, enabling them a fundamental component for large-scale integration of advanced hardware in neuromorphic computing.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0175446</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6147-5710</orcidid><orcidid>https://orcid.org/0000-0003-1757-2083</orcidid><orcidid>https://orcid.org/0000-0003-4242-1877</orcidid><orcidid>https://orcid.org/0000-0002-0598-266X</orcidid><orcidid>https://orcid.org/0000-0002-0618-1960</orcidid><orcidid>https://orcid.org/0000-0003-0642-8203</orcidid><orcidid>https://orcid.org/0000-0002-4372-9390</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2023-11, Vol.123 (20)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_5_0175446
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Droplets
Ferromagnetism
Hardware
Magnetic anisotropy
Magnetic fields
Magnetic moments
Neuromorphic computing
Nonlinear dynamics
Nonlinearity
Oscillation modes
Oscillators
Pattern classification
Polarization (spin alignment)
Reduction
Self oscillation
Synchronism
Torque
title Tilted magnetic anisotropy-tailored spin torque nano-oscillators for neuromorphic computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T23%3A55%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tilted%20magnetic%20anisotropy-tailored%20spin%20torque%20nano-oscillators%20for%20neuromorphic%20computing&rft.jtitle=Applied%20physics%20letters&rft.au=Wang,%20Ziwei&rft.date=2023-11-13&rft.volume=123&rft.issue=20&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0175446&rft_dat=%3Cproquest_scita%3E2889442118%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889442118&rft_id=info:pmid/&rfr_iscdi=true