Infrared dielectric function of GaAs1−xPx semiconductor alloys near the reststrahlen bands

The infrared dielectric function of thick GaAs1−xPx alloy layers grown on (001) GaAs substrates by hydride vapor phase epitaxy was investigated in the reststrahlen region using Fourier-transform infrared ellipsometry. The spectra are influenced by the Berreman artifact at the longitudinal optical ph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2023-10, Vol.123 (17)
Hauptverfasser: Zollner, Stefan, Vangala, Shivashankar R., Tassev, Vladimir L., Brinegar, Duane, Linser, Samuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The infrared dielectric function of thick GaAs1−xPx alloy layers grown on (001) GaAs substrates by hydride vapor phase epitaxy was investigated in the reststrahlen region using Fourier-transform infrared ellipsometry. The spectra are influenced by the Berreman artifact at the longitudinal optical phonon frequency of the GaAs substrate and by interference fringes due to the finite layer thickness. The ellipsometric angles were analyzed to determine the dielectric function of the alloy layer. Two-mode behavior, including strong GaAs-like and GaP-like optical phonons, was observed, confirming the results of Verleur and Barker [Phys. Rev. 149, 715 (1966)]. Due to the increased sensitivity of ellipsometry in the reststrahlen region, several weak phonon features could also be seen. The lattice absorption peaks are asymmetric and show side bands at the lower and higher frequencies. A single additional peak, as suggested by the percolation model, does not describe the spectra. The cluster model proposed by Verleur and Barker is a better fit to the data. Due to the broadening of the phonon absorption peaks, the authors were unable to find a unique decomposition into multiple components.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0173978