A data-driven model to determine the infiltration characteristics of air curtains at building entrances
The air curtain reduces heat exchange between the two sides by creating a virtual partition and works as a solution for improving building sealing and energy efficiency. Currently, the analytical numerical coupling method has achieved some success in describing the low-order theoretical descriptions...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2023-11, Vol.35 (11) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 35 |
creator | Song, Linye Zhang, Cong Hua, Jing Li, Kaijun Xu, Wei Zhang, Xinghui Duan, Chengchuan |
description | The air curtain reduces heat exchange between the two sides by creating a virtual partition and works as a solution for improving building sealing and energy efficiency. Currently, the analytical numerical coupling method has achieved some success in describing the low-order theoretical descriptions of air curtain flow, but its application scope is limited. This paper introduces a data-driven model (DDM) to predict the operation state of the air curtain and the volume flow rate through the entrance. A computational fluid dynamics model is built to generate the dataset, which is validated by comparing velocity and volume flow rate with the published data in the literature. Three of the widely used algorithms are tested: support vector machine, random forest, and backpropagation neural network (BPNN). The main conclusions are as follows: (1) The combination of pressure difference and air supply velocity can quickly determine the operation state of the air curtain in the scene (f1-score = 0.9). (2) A single hidden layer BPNN can achieve high-precision prediction of volume flow rate (
R
2 = 0.92). (3) Compared to theoretical methods, the DDM can retain three-dimensional characteristics of the jet and capture additional details. The approach proposed in this paper can be applied to practical environments to rapidly and accurately optimize the operating parameters of air curtains. |
doi_str_mv | 10.1063/5.0173678 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0173678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2884898808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-1226974d20b39174bd7386febd51f965b8995f4baeaf94716c4f9d3ab9518efc3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsL3yDgSmFqMpnJZVmKNyi40XXI5NKmzCQ1yQi-vVPbtatz4Hzn_-ED4BajBUaUPLYLhBmhjJ-BGUZcVIxSen7YGaooJfgSXOW8QwgRUdMZ2CyhUUVVJvlvG-AQje1hidDYYtPgg4Vla6EPzvclqeJjgHqrktLT2efidYbRQeUT1GMqyocMVYHd6HvjwwbaMH0FbfM1uHCqz_bmNOfg8_npY_Vard9f3lbLdaVJzUqF65oK1pgadURg1nSGEU6d7UyLnaBtx4VoXdMpq5xoGKa6ccIQ1YkWc-s0mYO7Y-4-xa_R5iJ3cUxhqpQ15w0XnCM-UfdHSqeYc7JO7pMfVPqRGMmDR9nKk8eJfTiyWfvyZ-Af-Bd7yXNS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884898808</pqid></control><display><type>article</type><title>A data-driven model to determine the infiltration characteristics of air curtains at building entrances</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Song, Linye ; Zhang, Cong ; Hua, Jing ; Li, Kaijun ; Xu, Wei ; Zhang, Xinghui ; Duan, Chengchuan</creator><creatorcontrib>Song, Linye ; Zhang, Cong ; Hua, Jing ; Li, Kaijun ; Xu, Wei ; Zhang, Xinghui ; Duan, Chengchuan</creatorcontrib><description>The air curtain reduces heat exchange between the two sides by creating a virtual partition and works as a solution for improving building sealing and energy efficiency. Currently, the analytical numerical coupling method has achieved some success in describing the low-order theoretical descriptions of air curtain flow, but its application scope is limited. This paper introduces a data-driven model (DDM) to predict the operation state of the air curtain and the volume flow rate through the entrance. A computational fluid dynamics model is built to generate the dataset, which is validated by comparing velocity and volume flow rate with the published data in the literature. Three of the widely used algorithms are tested: support vector machine, random forest, and backpropagation neural network (BPNN). The main conclusions are as follows: (1) The combination of pressure difference and air supply velocity can quickly determine the operation state of the air curtain in the scene (f1-score = 0.9). (2) A single hidden layer BPNN can achieve high-precision prediction of volume flow rate (
R
2 = 0.92). (3) Compared to theoretical methods, the DDM can retain three-dimensional characteristics of the jet and capture additional details. The approach proposed in this paper can be applied to practical environments to rapidly and accurately optimize the operating parameters of air curtains.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0173678</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Air curtains ; Air supplies ; Algorithms ; Artificial neural networks ; Back propagation networks ; Computational fluid dynamics ; Flow velocity ; Fluid dynamics ; Heat exchange ; Neural networks ; Physics ; Support vector machines</subject><ispartof>Physics of fluids (1994), 2023-11, Vol.35 (11)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-1226974d20b39174bd7386febd51f965b8995f4baeaf94716c4f9d3ab9518efc3</citedby><cites>FETCH-LOGICAL-c327t-1226974d20b39174bd7386febd51f965b8995f4baeaf94716c4f9d3ab9518efc3</cites><orcidid>0000-0002-6894-5823 ; 0000-0003-4759-9842 ; 0000-0001-8849-388X ; 0009-0007-9444-3951 ; 0000-0002-2481-8128 ; 0009-0003-0517-8692</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Song, Linye</creatorcontrib><creatorcontrib>Zhang, Cong</creatorcontrib><creatorcontrib>Hua, Jing</creatorcontrib><creatorcontrib>Li, Kaijun</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Zhang, Xinghui</creatorcontrib><creatorcontrib>Duan, Chengchuan</creatorcontrib><title>A data-driven model to determine the infiltration characteristics of air curtains at building entrances</title><title>Physics of fluids (1994)</title><description>The air curtain reduces heat exchange between the two sides by creating a virtual partition and works as a solution for improving building sealing and energy efficiency. Currently, the analytical numerical coupling method has achieved some success in describing the low-order theoretical descriptions of air curtain flow, but its application scope is limited. This paper introduces a data-driven model (DDM) to predict the operation state of the air curtain and the volume flow rate through the entrance. A computational fluid dynamics model is built to generate the dataset, which is validated by comparing velocity and volume flow rate with the published data in the literature. Three of the widely used algorithms are tested: support vector machine, random forest, and backpropagation neural network (BPNN). The main conclusions are as follows: (1) The combination of pressure difference and air supply velocity can quickly determine the operation state of the air curtain in the scene (f1-score = 0.9). (2) A single hidden layer BPNN can achieve high-precision prediction of volume flow rate (
R
2 = 0.92). (3) Compared to theoretical methods, the DDM can retain three-dimensional characteristics of the jet and capture additional details. The approach proposed in this paper can be applied to practical environments to rapidly and accurately optimize the operating parameters of air curtains.</description><subject>Air curtains</subject><subject>Air supplies</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Back propagation networks</subject><subject>Computational fluid dynamics</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Heat exchange</subject><subject>Neural networks</subject><subject>Physics</subject><subject>Support vector machines</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsL3yDgSmFqMpnJZVmKNyi40XXI5NKmzCQ1yQi-vVPbtatz4Hzn_-ED4BajBUaUPLYLhBmhjJ-BGUZcVIxSen7YGaooJfgSXOW8QwgRUdMZ2CyhUUVVJvlvG-AQje1hidDYYtPgg4Vla6EPzvclqeJjgHqrktLT2efidYbRQeUT1GMqyocMVYHd6HvjwwbaMH0FbfM1uHCqz_bmNOfg8_npY_Vard9f3lbLdaVJzUqF65oK1pgadURg1nSGEU6d7UyLnaBtx4VoXdMpq5xoGKa6ccIQ1YkWc-s0mYO7Y-4-xa_R5iJ3cUxhqpQ15w0XnCM-UfdHSqeYc7JO7pMfVPqRGMmDR9nKk8eJfTiyWfvyZ-Af-Bd7yXNS</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Song, Linye</creator><creator>Zhang, Cong</creator><creator>Hua, Jing</creator><creator>Li, Kaijun</creator><creator>Xu, Wei</creator><creator>Zhang, Xinghui</creator><creator>Duan, Chengchuan</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6894-5823</orcidid><orcidid>https://orcid.org/0000-0003-4759-9842</orcidid><orcidid>https://orcid.org/0000-0001-8849-388X</orcidid><orcidid>https://orcid.org/0009-0007-9444-3951</orcidid><orcidid>https://orcid.org/0000-0002-2481-8128</orcidid><orcidid>https://orcid.org/0009-0003-0517-8692</orcidid></search><sort><creationdate>202311</creationdate><title>A data-driven model to determine the infiltration characteristics of air curtains at building entrances</title><author>Song, Linye ; Zhang, Cong ; Hua, Jing ; Li, Kaijun ; Xu, Wei ; Zhang, Xinghui ; Duan, Chengchuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-1226974d20b39174bd7386febd51f965b8995f4baeaf94716c4f9d3ab9518efc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Air curtains</topic><topic>Air supplies</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Back propagation networks</topic><topic>Computational fluid dynamics</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Heat exchange</topic><topic>Neural networks</topic><topic>Physics</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Linye</creatorcontrib><creatorcontrib>Zhang, Cong</creatorcontrib><creatorcontrib>Hua, Jing</creatorcontrib><creatorcontrib>Li, Kaijun</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Zhang, Xinghui</creatorcontrib><creatorcontrib>Duan, Chengchuan</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Linye</au><au>Zhang, Cong</au><au>Hua, Jing</au><au>Li, Kaijun</au><au>Xu, Wei</au><au>Zhang, Xinghui</au><au>Duan, Chengchuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A data-driven model to determine the infiltration characteristics of air curtains at building entrances</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2023-11</date><risdate>2023</risdate><volume>35</volume><issue>11</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The air curtain reduces heat exchange between the two sides by creating a virtual partition and works as a solution for improving building sealing and energy efficiency. Currently, the analytical numerical coupling method has achieved some success in describing the low-order theoretical descriptions of air curtain flow, but its application scope is limited. This paper introduces a data-driven model (DDM) to predict the operation state of the air curtain and the volume flow rate through the entrance. A computational fluid dynamics model is built to generate the dataset, which is validated by comparing velocity and volume flow rate with the published data in the literature. Three of the widely used algorithms are tested: support vector machine, random forest, and backpropagation neural network (BPNN). The main conclusions are as follows: (1) The combination of pressure difference and air supply velocity can quickly determine the operation state of the air curtain in the scene (f1-score = 0.9). (2) A single hidden layer BPNN can achieve high-precision prediction of volume flow rate (
R
2 = 0.92). (3) Compared to theoretical methods, the DDM can retain three-dimensional characteristics of the jet and capture additional details. The approach proposed in this paper can be applied to practical environments to rapidly and accurately optimize the operating parameters of air curtains.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0173678</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6894-5823</orcidid><orcidid>https://orcid.org/0000-0003-4759-9842</orcidid><orcidid>https://orcid.org/0000-0001-8849-388X</orcidid><orcidid>https://orcid.org/0009-0007-9444-3951</orcidid><orcidid>https://orcid.org/0000-0002-2481-8128</orcidid><orcidid>https://orcid.org/0009-0003-0517-8692</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2023-11, Vol.35 (11) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0173678 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Air curtains Air supplies Algorithms Artificial neural networks Back propagation networks Computational fluid dynamics Flow velocity Fluid dynamics Heat exchange Neural networks Physics Support vector machines |
title | A data-driven model to determine the infiltration characteristics of air curtains at building entrances |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A48%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20data-driven%20model%20to%20determine%20the%20infiltration%20characteristics%20of%20air%20curtains%20at%20building%20entrances&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Song,%20Linye&rft.date=2023-11&rft.volume=35&rft.issue=11&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0173678&rft_dat=%3Cproquest_scita%3E2884898808%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2884898808&rft_id=info:pmid/&rfr_iscdi=true |