Classification of healthy and diabetic mellitus individuals by extracted textural features from left plantar thermograms and classifying using svm and nb classifiers

The aim of the study is to classify the healthy and diabetic mellitus individuals by extracting textural features from left plantar thermograms and classifying using support vector machine (SVM) and Naive Bayes (NB) classifiers. Materials and Methods: Images are collected from IEEE dataport, machine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mounika, N., Thirunavukkarasu, Usharani
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2822
creator Mounika, N.
Thirunavukkarasu, Usharani
description The aim of the study is to classify the healthy and diabetic mellitus individuals by extracting textural features from left plantar thermograms and classifying using support vector machine (SVM) and Naive Bayes (NB) classifiers. Materials and Methods: Images are collected from IEEE dataport, machine learning repository for healthy (n=21) and abnormal (n=21) to our study with alpha value as 0.05, 95% as CI, power as 80% and enrollment ratio as 1. The classification of diseased and healthy subjects was performed using WEKA, a data mining tool. The statistical analysis was performed using IBM SPSS software. Results: The performance of the classifiers were compared and found that the NB classifier has achieved 90.47% as classification accuracy rate than the SVM classifier. The independent Tsample test reveals that there is a significant difference between the groups (p
doi_str_mv 10.1063/5.0173193
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0173193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889742538</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-1511602405eeaa3c4b220bc812e4458438fb0ac2a0c5e4407f5ab6fc4b13ddb73</originalsourceid><addsrcrecordid>eNo1UclKBDEUDKLgOHrwDwLehB6zdHo5yuAGA14UvDUv6WQmQ3oxSQ_2B_mf9ixe3iteFVXwCqFbShaUZPxBLAjNOS35GZpRIWiSZzQ7RzNCyjRhKf-6RFchbAlhZZ4XM_S7dBCCNVZBtF2LO4M3GlzcjBjaGtcWpI5W4UY7Z-MQsG1ru7P1AC5gOWL9Ez2oqGscJzh4cNhomIAO2PiuwU6biHsHbQSP40b7plt7aMLBXh3DR9uu8RD2M-yaA9PKf9JqH67RhZkC9c1pz9Hn89PH8jVZvb-8LR9XSU85jwkVlGaEpURoDcBVKhkjUhWU6TQVRcoLIwkoBkSJ6UJyI0BmZtJRXtcy53N0d_Ttffc96BCrbTf4doqsWFGUecoELybV_VEVlI2Ht1W9tw34saKk2tdQiepUA_8D4Hh-dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2889742538</pqid></control><display><type>conference_proceeding</type><title>Classification of healthy and diabetic mellitus individuals by extracted textural features from left plantar thermograms and classifying using svm and nb classifiers</title><source>AIP Journals Complete</source><creator>Mounika, N. ; Thirunavukkarasu, Usharani</creator><contributor>Srinivasan, R. ; Balasubramanian, PL ; Jeganathan, M. ; Sathish, T. ; Babu, A.B. Karthick Anand ; Vijayan, V.</contributor><creatorcontrib>Mounika, N. ; Thirunavukkarasu, Usharani ; Srinivasan, R. ; Balasubramanian, PL ; Jeganathan, M. ; Sathish, T. ; Babu, A.B. Karthick Anand ; Vijayan, V.</creatorcontrib><description>The aim of the study is to classify the healthy and diabetic mellitus individuals by extracting textural features from left plantar thermograms and classifying using support vector machine (SVM) and Naive Bayes (NB) classifiers. Materials and Methods: Images are collected from IEEE dataport, machine learning repository for healthy (n=21) and abnormal (n=21) to our study with alpha value as 0.05, 95% as CI, power as 80% and enrollment ratio as 1. The classification of diseased and healthy subjects was performed using WEKA, a data mining tool. The statistical analysis was performed using IBM SPSS software. Results: The performance of the classifiers were compared and found that the NB classifier has achieved 90.47% as classification accuracy rate than the SVM classifier. The independent Tsample test reveals that there is a significant difference between the groups (p&lt;0.01). Conclusion: The NB classifier shows the higher accuracy value when compared to the SVM classifier for predicting diabetes mellitus.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0173193</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Classification ; Classifiers ; Data mining ; Diabetes ; Diabetes mellitus ; Machine learning ; Statistical analysis ; Support vector machines</subject><ispartof>AIP conference proceedings, 2023, Vol.2822 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0173193$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>310,311,315,782,786,791,792,796,4516,23939,23940,25149,27933,27934,76394</link.rule.ids></links><search><contributor>Srinivasan, R.</contributor><contributor>Balasubramanian, PL</contributor><contributor>Jeganathan, M.</contributor><contributor>Sathish, T.</contributor><contributor>Babu, A.B. Karthick Anand</contributor><contributor>Vijayan, V.</contributor><creatorcontrib>Mounika, N.</creatorcontrib><creatorcontrib>Thirunavukkarasu, Usharani</creatorcontrib><title>Classification of healthy and diabetic mellitus individuals by extracted textural features from left plantar thermograms and classifying using svm and nb classifiers</title><title>AIP conference proceedings</title><description>The aim of the study is to classify the healthy and diabetic mellitus individuals by extracting textural features from left plantar thermograms and classifying using support vector machine (SVM) and Naive Bayes (NB) classifiers. Materials and Methods: Images are collected from IEEE dataport, machine learning repository for healthy (n=21) and abnormal (n=21) to our study with alpha value as 0.05, 95% as CI, power as 80% and enrollment ratio as 1. The classification of diseased and healthy subjects was performed using WEKA, a data mining tool. The statistical analysis was performed using IBM SPSS software. Results: The performance of the classifiers were compared and found that the NB classifier has achieved 90.47% as classification accuracy rate than the SVM classifier. The independent Tsample test reveals that there is a significant difference between the groups (p&lt;0.01). Conclusion: The NB classifier shows the higher accuracy value when compared to the SVM classifier for predicting diabetes mellitus.</description><subject>Classification</subject><subject>Classifiers</subject><subject>Data mining</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Machine learning</subject><subject>Statistical analysis</subject><subject>Support vector machines</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNo1UclKBDEUDKLgOHrwDwLehB6zdHo5yuAGA14UvDUv6WQmQ3oxSQ_2B_mf9ixe3iteFVXwCqFbShaUZPxBLAjNOS35GZpRIWiSZzQ7RzNCyjRhKf-6RFchbAlhZZ4XM_S7dBCCNVZBtF2LO4M3GlzcjBjaGtcWpI5W4UY7Z-MQsG1ru7P1AC5gOWL9Ez2oqGscJzh4cNhomIAO2PiuwU6biHsHbQSP40b7plt7aMLBXh3DR9uu8RD2M-yaA9PKf9JqH67RhZkC9c1pz9Hn89PH8jVZvb-8LR9XSU85jwkVlGaEpURoDcBVKhkjUhWU6TQVRcoLIwkoBkSJ6UJyI0BmZtJRXtcy53N0d_Ttffc96BCrbTf4doqsWFGUecoELybV_VEVlI2Ht1W9tw34saKk2tdQiepUA_8D4Hh-dw</recordid><startdate>20231114</startdate><enddate>20231114</enddate><creator>Mounika, N.</creator><creator>Thirunavukkarasu, Usharani</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231114</creationdate><title>Classification of healthy and diabetic mellitus individuals by extracted textural features from left plantar thermograms and classifying using svm and nb classifiers</title><author>Mounika, N. ; Thirunavukkarasu, Usharani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-1511602405eeaa3c4b220bc812e4458438fb0ac2a0c5e4407f5ab6fc4b13ddb73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Classification</topic><topic>Classifiers</topic><topic>Data mining</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Machine learning</topic><topic>Statistical analysis</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mounika, N.</creatorcontrib><creatorcontrib>Thirunavukkarasu, Usharani</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mounika, N.</au><au>Thirunavukkarasu, Usharani</au><au>Srinivasan, R.</au><au>Balasubramanian, PL</au><au>Jeganathan, M.</au><au>Sathish, T.</au><au>Babu, A.B. Karthick Anand</au><au>Vijayan, V.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Classification of healthy and diabetic mellitus individuals by extracted textural features from left plantar thermograms and classifying using svm and nb classifiers</atitle><btitle>AIP conference proceedings</btitle><date>2023-11-14</date><risdate>2023</risdate><volume>2822</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The aim of the study is to classify the healthy and diabetic mellitus individuals by extracting textural features from left plantar thermograms and classifying using support vector machine (SVM) and Naive Bayes (NB) classifiers. Materials and Methods: Images are collected from IEEE dataport, machine learning repository for healthy (n=21) and abnormal (n=21) to our study with alpha value as 0.05, 95% as CI, power as 80% and enrollment ratio as 1. The classification of diseased and healthy subjects was performed using WEKA, a data mining tool. The statistical analysis was performed using IBM SPSS software. Results: The performance of the classifiers were compared and found that the NB classifier has achieved 90.47% as classification accuracy rate than the SVM classifier. The independent Tsample test reveals that there is a significant difference between the groups (p&lt;0.01). Conclusion: The NB classifier shows the higher accuracy value when compared to the SVM classifier for predicting diabetes mellitus.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0173193</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2822 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0173193
source AIP Journals Complete
subjects Classification
Classifiers
Data mining
Diabetes
Diabetes mellitus
Machine learning
Statistical analysis
Support vector machines
title Classification of healthy and diabetic mellitus individuals by extracted textural features from left plantar thermograms and classifying using svm and nb classifiers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T10%3A00%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Classification%20of%20healthy%20and%20diabetic%20mellitus%20individuals%20by%20extracted%20textural%20features%20from%20left%20plantar%20thermograms%20and%20classifying%20using%20svm%20and%20nb%20classifiers&rft.btitle=AIP%20conference%20proceedings&rft.au=Mounika,%20N.&rft.date=2023-11-14&rft.volume=2822&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0173193&rft_dat=%3Cproquest_scita%3E2889742538%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889742538&rft_id=info:pmid/&rfr_iscdi=true