Transparent conductive oxides and low-loss nitride-rich silicon waveguides as building blocks for neuromorphic photonics

Fully CMOS-compatible photonic memory holding devices hold a potential in the development of ultrafast artificial neural networks. Leveraging the benefits of photonics such as high-bandwidth, low latencies, low-energy interconnect, and high speed, they can overcome the existing limits of electronic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2023-11, Vol.123 (22)
Hauptverfasser: Gosciniak, Jacek, Khurgin, Jacob B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page
container_title Applied physics letters
container_volume 123
creator Gosciniak, Jacek
Khurgin, Jacob B.
description Fully CMOS-compatible photonic memory holding devices hold a potential in the development of ultrafast artificial neural networks. Leveraging the benefits of photonics such as high-bandwidth, low latencies, low-energy interconnect, and high speed, they can overcome the existing limits of electronic processing. To satisfy all these requirements, a photonic platform is proposed that combines low-loss nitride-rich silicon as a guide and low-loss transparent conductive oxides as an active material that can provide high nonlinearity and bistability under both electrical and optical signals.
doi_str_mv 10.1063/5.0172601
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0172601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2894041699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-476b9d10c09057e0c036c4ca0561e27f36a0a0d524aa9f7d345f40ba5d4a20743</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwdbL56h6l-AUFL_W8ZJNsm7pN1mS3rf_ele3Z0zDDwwzzInRLYEZA0Ec-AyJzAeQMTQhImVFC5udoAgA0EwUnl-gqpe3Q8pzSCTquovKpVdH6DuvgTa87t7c4HJ2xCStvcBMOWRNSwt51cZhm0ekNTq5xg8cHtbfrfsQJV71rjPNrXDVBfyVch4i97WPYhdhunMbtJnTBO52u0UWtmmRvTnWKPl-eV4u3bPnx-r54Wmaa5rLLmBRVYQhoKIBLO1QqNNMKuCA2lzUVChQYnjOliloaynjNoFLcMJWDZHSK7sa9bQzfvU1duQ199MPJMp8XDBgRRTGo-1HpOHwabV220e1U_CkJlH_Blrw8BTvYh9Em7TrVueD_wb9oIXnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894041699</pqid></control><display><type>article</type><title>Transparent conductive oxides and low-loss nitride-rich silicon waveguides as building blocks for neuromorphic photonics</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Gosciniak, Jacek ; Khurgin, Jacob B.</creator><creatorcontrib>Gosciniak, Jacek ; Khurgin, Jacob B.</creatorcontrib><description>Fully CMOS-compatible photonic memory holding devices hold a potential in the development of ultrafast artificial neural networks. Leveraging the benefits of photonics such as high-bandwidth, low latencies, low-energy interconnect, and high speed, they can overcome the existing limits of electronic processing. To satisfy all these requirements, a photonic platform is proposed that combines low-loss nitride-rich silicon as a guide and low-loss transparent conductive oxides as an active material that can provide high nonlinearity and bistability under both electrical and optical signals.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0172601</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Artificial neural networks ; Holding devices ; Memory devices ; Nitrides ; Optical communication ; Photonics ; Silicon ; Waveguides</subject><ispartof>Applied physics letters, 2023-11, Vol.123 (22)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-476b9d10c09057e0c036c4ca0561e27f36a0a0d524aa9f7d345f40ba5d4a20743</citedby><cites>FETCH-LOGICAL-c327t-476b9d10c09057e0c036c4ca0561e27f36a0a0d524aa9f7d345f40ba5d4a20743</cites><orcidid>0000-0003-2926-9460 ; 0000-0003-0725-8736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0172601$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Gosciniak, Jacek</creatorcontrib><creatorcontrib>Khurgin, Jacob B.</creatorcontrib><title>Transparent conductive oxides and low-loss nitride-rich silicon waveguides as building blocks for neuromorphic photonics</title><title>Applied physics letters</title><description>Fully CMOS-compatible photonic memory holding devices hold a potential in the development of ultrafast artificial neural networks. Leveraging the benefits of photonics such as high-bandwidth, low latencies, low-energy interconnect, and high speed, they can overcome the existing limits of electronic processing. To satisfy all these requirements, a photonic platform is proposed that combines low-loss nitride-rich silicon as a guide and low-loss transparent conductive oxides as an active material that can provide high nonlinearity and bistability under both electrical and optical signals.</description><subject>Applied physics</subject><subject>Artificial neural networks</subject><subject>Holding devices</subject><subject>Memory devices</subject><subject>Nitrides</subject><subject>Optical communication</subject><subject>Photonics</subject><subject>Silicon</subject><subject>Waveguides</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwdbL56h6l-AUFL_W8ZJNsm7pN1mS3rf_ele3Z0zDDwwzzInRLYEZA0Ec-AyJzAeQMTQhImVFC5udoAgA0EwUnl-gqpe3Q8pzSCTquovKpVdH6DuvgTa87t7c4HJ2xCStvcBMOWRNSwt51cZhm0ekNTq5xg8cHtbfrfsQJV71rjPNrXDVBfyVch4i97WPYhdhunMbtJnTBO52u0UWtmmRvTnWKPl-eV4u3bPnx-r54Wmaa5rLLmBRVYQhoKIBLO1QqNNMKuCA2lzUVChQYnjOliloaynjNoFLcMJWDZHSK7sa9bQzfvU1duQ199MPJMp8XDBgRRTGo-1HpOHwabV220e1U_CkJlH_Blrw8BTvYh9Em7TrVueD_wb9oIXnA</recordid><startdate>20231127</startdate><enddate>20231127</enddate><creator>Gosciniak, Jacek</creator><creator>Khurgin, Jacob B.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2926-9460</orcidid><orcidid>https://orcid.org/0000-0003-0725-8736</orcidid></search><sort><creationdate>20231127</creationdate><title>Transparent conductive oxides and low-loss nitride-rich silicon waveguides as building blocks for neuromorphic photonics</title><author>Gosciniak, Jacek ; Khurgin, Jacob B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-476b9d10c09057e0c036c4ca0561e27f36a0a0d524aa9f7d345f40ba5d4a20743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Artificial neural networks</topic><topic>Holding devices</topic><topic>Memory devices</topic><topic>Nitrides</topic><topic>Optical communication</topic><topic>Photonics</topic><topic>Silicon</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gosciniak, Jacek</creatorcontrib><creatorcontrib>Khurgin, Jacob B.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gosciniak, Jacek</au><au>Khurgin, Jacob B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transparent conductive oxides and low-loss nitride-rich silicon waveguides as building blocks for neuromorphic photonics</atitle><jtitle>Applied physics letters</jtitle><date>2023-11-27</date><risdate>2023</risdate><volume>123</volume><issue>22</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Fully CMOS-compatible photonic memory holding devices hold a potential in the development of ultrafast artificial neural networks. Leveraging the benefits of photonics such as high-bandwidth, low latencies, low-energy interconnect, and high speed, they can overcome the existing limits of electronic processing. To satisfy all these requirements, a photonic platform is proposed that combines low-loss nitride-rich silicon as a guide and low-loss transparent conductive oxides as an active material that can provide high nonlinearity and bistability under both electrical and optical signals.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0172601</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2926-9460</orcidid><orcidid>https://orcid.org/0000-0003-0725-8736</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2023-11, Vol.123 (22)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_5_0172601
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Artificial neural networks
Holding devices
Memory devices
Nitrides
Optical communication
Photonics
Silicon
Waveguides
title Transparent conductive oxides and low-loss nitride-rich silicon waveguides as building blocks for neuromorphic photonics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A50%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transparent%20conductive%20oxides%20and%20low-loss%20nitride-rich%20silicon%20waveguides%20as%20building%20blocks%20for%20neuromorphic%20photonics&rft.jtitle=Applied%20physics%20letters&rft.au=Gosciniak,%20Jacek&rft.date=2023-11-27&rft.volume=123&rft.issue=22&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0172601&rft_dat=%3Cproquest_scita%3E2894041699%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2894041699&rft_id=info:pmid/&rfr_iscdi=true