Micromechanical models for predicting the thermal conductivity properties of construction materials: A comparison with experimental data

This paper focused on analytic modeling of the effective thermal conductivity of bio-composite building materials. The analytic model adopted in this paper is the homogenization method. The principal idea of this method is to characterize the effective thermal conductivity from a microstructural des...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chiguer, I., Bahlaoui, A., Arroub, I., Abouelmajd, M., Najm-Eddin, Y., Najm-Eddin, A., Belhouideg, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2761
creator Chiguer, I.
Bahlaoui, A.
Arroub, I.
Abouelmajd, M.
Najm-Eddin, Y.
Najm-Eddin, A.
Belhouideg, S.
description This paper focused on analytic modeling of the effective thermal conductivity of bio-composite building materials. The analytic model adopted in this paper is the homogenization method. The principal idea of this method is to characterize the effective thermal conductivity from a microstructural description of the heterogeneous material and the knowledge of the local behavior of constituents (matrix and fiber) using a micromechanical approach. A three schemes (the dilute scheme, Auto-coherent scheme and the Mori-Tanaka scheme) are introduced and compared with Voigt-Reuss and Hashin-Shtrikman bounds and with experimental data at low fraction. A good agreement between the three schemes and Voigt-Reuss and Hashin-Shtrikman bounds and experimental values was revealed. The maximum deviations remain lower than 4.4% between Mori-Tanaka scheme and experimental data.
doi_str_mv 10.1063/5.0171774
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0171774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2873050765</sourcerecordid><originalsourceid>FETCH-LOGICAL-p963-d0a7377e5c52841830e64ed65c62a0f051ace7e6ed2224043e08aefb81ded5133</originalsourceid><addsrcrecordid>eNotkMtOAzEMRSMEEuWx4A8isUOa4iSTZMquqnhJIDZdsBuFxENTdR4kKdA_4LPJqF1YlnyP7WsTcsVgykCJWzkFppnW5RGZMClZoRVTx2QCMCsLXor3U3IW4xqAz7SuJuTv1dvQt2hXpvPWbGjbO9xE2vSBDgGdt8l3nzStcIzQZsL2ndvm8rdPu8z0A4bkMdK-GaWYwij2HW1NwuDNJt7ReVbawQQfc_3HpxXF39zmW-xSnuhMMhfkpMksXh7yOVk-3C8XT8XL2-PzYv5SDDMlCgdGC61RWsmrklUCUJXolLSKG2hAMmNRo0LHOS-hFAiVweajYg6dZEKck-v92Gz8a4sx1et-G7q8seaVFiBBK5mpmz0VrU9mvKYeslsTdjWDenx0LevDo8U_9MNzUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2873050765</pqid></control><display><type>conference_proceeding</type><title>Micromechanical models for predicting the thermal conductivity properties of construction materials: A comparison with experimental data</title><source>AIP Journals Complete</source><creator>Chiguer, I. ; Bahlaoui, A. ; Arroub, I. ; Abouelmajd, M. ; Najm-Eddin, Y. ; Najm-Eddin, A. ; Belhouideg, S.</creator><contributor>Belkassmi, Youssef ; Maimouni, Lahoucine El ; Ait-Taleb, Thami</contributor><creatorcontrib>Chiguer, I. ; Bahlaoui, A. ; Arroub, I. ; Abouelmajd, M. ; Najm-Eddin, Y. ; Najm-Eddin, A. ; Belhouideg, S. ; Belkassmi, Youssef ; Maimouni, Lahoucine El ; Ait-Taleb, Thami</creatorcontrib><description>This paper focused on analytic modeling of the effective thermal conductivity of bio-composite building materials. The analytic model adopted in this paper is the homogenization method. The principal idea of this method is to characterize the effective thermal conductivity from a microstructural description of the heterogeneous material and the knowledge of the local behavior of constituents (matrix and fiber) using a micromechanical approach. A three schemes (the dilute scheme, Auto-coherent scheme and the Mori-Tanaka scheme) are introduced and compared with Voigt-Reuss and Hashin-Shtrikman bounds and with experimental data at low fraction. A good agreement between the three schemes and Voigt-Reuss and Hashin-Shtrikman bounds and experimental values was revealed. The maximum deviations remain lower than 4.4% between Mori-Tanaka scheme and experimental data.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0171774</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Building materials ; Construction materials ; Heat transfer ; Mathematical models ; Thermal conductivity</subject><ispartof>AIP Conference Proceedings, 2023, Vol.2761 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0171774$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Belkassmi, Youssef</contributor><contributor>Maimouni, Lahoucine El</contributor><contributor>Ait-Taleb, Thami</contributor><creatorcontrib>Chiguer, I.</creatorcontrib><creatorcontrib>Bahlaoui, A.</creatorcontrib><creatorcontrib>Arroub, I.</creatorcontrib><creatorcontrib>Abouelmajd, M.</creatorcontrib><creatorcontrib>Najm-Eddin, Y.</creatorcontrib><creatorcontrib>Najm-Eddin, A.</creatorcontrib><creatorcontrib>Belhouideg, S.</creatorcontrib><title>Micromechanical models for predicting the thermal conductivity properties of construction materials: A comparison with experimental data</title><title>AIP Conference Proceedings</title><description>This paper focused on analytic modeling of the effective thermal conductivity of bio-composite building materials. The analytic model adopted in this paper is the homogenization method. The principal idea of this method is to characterize the effective thermal conductivity from a microstructural description of the heterogeneous material and the knowledge of the local behavior of constituents (matrix and fiber) using a micromechanical approach. A three schemes (the dilute scheme, Auto-coherent scheme and the Mori-Tanaka scheme) are introduced and compared with Voigt-Reuss and Hashin-Shtrikman bounds and with experimental data at low fraction. A good agreement between the three schemes and Voigt-Reuss and Hashin-Shtrikman bounds and experimental values was revealed. The maximum deviations remain lower than 4.4% between Mori-Tanaka scheme and experimental data.</description><subject>Building materials</subject><subject>Construction materials</subject><subject>Heat transfer</subject><subject>Mathematical models</subject><subject>Thermal conductivity</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkMtOAzEMRSMEEuWx4A8isUOa4iSTZMquqnhJIDZdsBuFxENTdR4kKdA_4LPJqF1YlnyP7WsTcsVgykCJWzkFppnW5RGZMClZoRVTx2QCMCsLXor3U3IW4xqAz7SuJuTv1dvQt2hXpvPWbGjbO9xE2vSBDgGdt8l3nzStcIzQZsL2ndvm8rdPu8z0A4bkMdK-GaWYwij2HW1NwuDNJt7ReVbawQQfc_3HpxXF39zmW-xSnuhMMhfkpMksXh7yOVk-3C8XT8XL2-PzYv5SDDMlCgdGC61RWsmrklUCUJXolLSKG2hAMmNRo0LHOS-hFAiVweajYg6dZEKck-v92Gz8a4sx1et-G7q8seaVFiBBK5mpmz0VrU9mvKYeslsTdjWDenx0LevDo8U_9MNzUA</recordid><startdate>20231005</startdate><enddate>20231005</enddate><creator>Chiguer, I.</creator><creator>Bahlaoui, A.</creator><creator>Arroub, I.</creator><creator>Abouelmajd, M.</creator><creator>Najm-Eddin, Y.</creator><creator>Najm-Eddin, A.</creator><creator>Belhouideg, S.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231005</creationdate><title>Micromechanical models for predicting the thermal conductivity properties of construction materials: A comparison with experimental data</title><author>Chiguer, I. ; Bahlaoui, A. ; Arroub, I. ; Abouelmajd, M. ; Najm-Eddin, Y. ; Najm-Eddin, A. ; Belhouideg, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p963-d0a7377e5c52841830e64ed65c62a0f051ace7e6ed2224043e08aefb81ded5133</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Building materials</topic><topic>Construction materials</topic><topic>Heat transfer</topic><topic>Mathematical models</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiguer, I.</creatorcontrib><creatorcontrib>Bahlaoui, A.</creatorcontrib><creatorcontrib>Arroub, I.</creatorcontrib><creatorcontrib>Abouelmajd, M.</creatorcontrib><creatorcontrib>Najm-Eddin, Y.</creatorcontrib><creatorcontrib>Najm-Eddin, A.</creatorcontrib><creatorcontrib>Belhouideg, S.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiguer, I.</au><au>Bahlaoui, A.</au><au>Arroub, I.</au><au>Abouelmajd, M.</au><au>Najm-Eddin, Y.</au><au>Najm-Eddin, A.</au><au>Belhouideg, S.</au><au>Belkassmi, Youssef</au><au>Maimouni, Lahoucine El</au><au>Ait-Taleb, Thami</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Micromechanical models for predicting the thermal conductivity properties of construction materials: A comparison with experimental data</atitle><btitle>AIP Conference Proceedings</btitle><date>2023-10-05</date><risdate>2023</risdate><volume>2761</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>This paper focused on analytic modeling of the effective thermal conductivity of bio-composite building materials. The analytic model adopted in this paper is the homogenization method. The principal idea of this method is to characterize the effective thermal conductivity from a microstructural description of the heterogeneous material and the knowledge of the local behavior of constituents (matrix and fiber) using a micromechanical approach. A three schemes (the dilute scheme, Auto-coherent scheme and the Mori-Tanaka scheme) are introduced and compared with Voigt-Reuss and Hashin-Shtrikman bounds and with experimental data at low fraction. A good agreement between the three schemes and Voigt-Reuss and Hashin-Shtrikman bounds and experimental values was revealed. The maximum deviations remain lower than 4.4% between Mori-Tanaka scheme and experimental data.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0171774</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2023, Vol.2761 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0171774
source AIP Journals Complete
subjects Building materials
Construction materials
Heat transfer
Mathematical models
Thermal conductivity
title Micromechanical models for predicting the thermal conductivity properties of construction materials: A comparison with experimental data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A20%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Micromechanical%20models%20for%20predicting%20the%20thermal%20conductivity%20properties%20of%20construction%20materials:%20A%20comparison%20with%20experimental%20data&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Chiguer,%20I.&rft.date=2023-10-05&rft.volume=2761&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0171774&rft_dat=%3Cproquest_scita%3E2873050765%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2873050765&rft_id=info:pmid/&rfr_iscdi=true