Sparse auto-encoder based micro-aneurysm detection

Microaneurysms (MAs) are the early noticeable lesions in retina, their detection plays a crucial role in the diagnosis of diabetic retinopathy. Here the discriminative features are automatically learned in an unsupervised manner. The stacked sparse auto-encoder (SSAE) is effective at learning high-l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bindhya, P. S., Chitra, R., Raj, V. S. Bibin
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2904
creator Bindhya, P. S.
Chitra, R.
Raj, V. S. Bibin
description Microaneurysms (MAs) are the early noticeable lesions in retina, their detection plays a crucial role in the diagnosis of diabetic retinopathy. Here the discriminative features are automatically learned in an unsupervised manner. The stacked sparse auto-encoder (SSAE) is effective at learning high-level features from overlapping image patches during training. Using 10-fold cross-validation and fine-tuning yield an improved F-measure of 97.3% and an average area under the ROC curve (AUC) 96.7% obtained. Experimental validation is performed, both quantitative and qualitative, in the public datasetDIARETDB1. The result achieved a better accuracy compared to other methods.
doi_str_mv 10.1063/5.0170568
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0170568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2876723912</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-840f2d60e774236c817802b57685e9939ab18298a6edeac673af1620674c3d7f3</originalsourceid><addsrcrecordid>eNotkE1LAzEURYMoWKsL_8GAOyH1JZnkJUspWoWCCxXchUzmDUxxPkxmFv33trSruzncezmM3QtYCTDqSa9AIGhjL9hCaC04GmEu2QLAlVyW6uea3eS8A5AO0S6Y_BxDylSEeRo49XGoKRVVyFQXXRvTwENPc9rnrqhpoji1Q3_Lrprwm-nunEv2_frytX7j24_N-_p5y0eh1MRtCY2sDRBiKZWJVqAFWWk0VpNzyoVKWOlsMFRTiAZVaISRYLCMqsZGLdnDqXdMw99MefK7YU79YdJLiwalckIeqMcTlWM7heM_P6a2C2nvBfijE6_92Yn6B-aaUYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2876723912</pqid></control><display><type>conference_proceeding</type><title>Sparse auto-encoder based micro-aneurysm detection</title><source>AIP Journals Complete</source><creator>Bindhya, P. S. ; Chitra, R. ; Raj, V. S. Bibin</creator><contributor>Balas, Valentina E ; Suresh, L. Padma ; Panda, Ganapati</contributor><creatorcontrib>Bindhya, P. S. ; Chitra, R. ; Raj, V. S. Bibin ; Balas, Valentina E ; Suresh, L. Padma ; Panda, Ganapati</creatorcontrib><description>Microaneurysms (MAs) are the early noticeable lesions in retina, their detection plays a crucial role in the diagnosis of diabetic retinopathy. Here the discriminative features are automatically learned in an unsupervised manner. The stacked sparse auto-encoder (SSAE) is effective at learning high-level features from overlapping image patches during training. Using 10-fold cross-validation and fine-tuning yield an improved F-measure of 97.3% and an average area under the ROC curve (AUC) 96.7% obtained. Experimental validation is performed, both quantitative and qualitative, in the public datasetDIARETDB1. The result achieved a better accuracy compared to other methods.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0170568</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Coders</subject><ispartof>AIP conference proceedings, 2023, Vol.2904 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0170568$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,791,4498,23911,23912,25121,27905,27906,76133</link.rule.ids></links><search><contributor>Balas, Valentina E</contributor><contributor>Suresh, L. Padma</contributor><contributor>Panda, Ganapati</contributor><creatorcontrib>Bindhya, P. S.</creatorcontrib><creatorcontrib>Chitra, R.</creatorcontrib><creatorcontrib>Raj, V. S. Bibin</creatorcontrib><title>Sparse auto-encoder based micro-aneurysm detection</title><title>AIP conference proceedings</title><description>Microaneurysms (MAs) are the early noticeable lesions in retina, their detection plays a crucial role in the diagnosis of diabetic retinopathy. Here the discriminative features are automatically learned in an unsupervised manner. The stacked sparse auto-encoder (SSAE) is effective at learning high-level features from overlapping image patches during training. Using 10-fold cross-validation and fine-tuning yield an improved F-measure of 97.3% and an average area under the ROC curve (AUC) 96.7% obtained. Experimental validation is performed, both quantitative and qualitative, in the public datasetDIARETDB1. The result achieved a better accuracy compared to other methods.</description><subject>Coders</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1LAzEURYMoWKsL_8GAOyH1JZnkJUspWoWCCxXchUzmDUxxPkxmFv33trSruzncezmM3QtYCTDqSa9AIGhjL9hCaC04GmEu2QLAlVyW6uea3eS8A5AO0S6Y_BxDylSEeRo49XGoKRVVyFQXXRvTwENPc9rnrqhpoji1Q3_Lrprwm-nunEv2_frytX7j24_N-_p5y0eh1MRtCY2sDRBiKZWJVqAFWWk0VpNzyoVKWOlsMFRTiAZVaISRYLCMqsZGLdnDqXdMw99MefK7YU79YdJLiwalckIeqMcTlWM7heM_P6a2C2nvBfijE6_92Yn6B-aaUYQ</recordid><startdate>20231013</startdate><enddate>20231013</enddate><creator>Bindhya, P. S.</creator><creator>Chitra, R.</creator><creator>Raj, V. S. Bibin</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231013</creationdate><title>Sparse auto-encoder based micro-aneurysm detection</title><author>Bindhya, P. S. ; Chitra, R. ; Raj, V. S. Bibin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-840f2d60e774236c817802b57685e9939ab18298a6edeac673af1620674c3d7f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Coders</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bindhya, P. S.</creatorcontrib><creatorcontrib>Chitra, R.</creatorcontrib><creatorcontrib>Raj, V. S. Bibin</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bindhya, P. S.</au><au>Chitra, R.</au><au>Raj, V. S. Bibin</au><au>Balas, Valentina E</au><au>Suresh, L. Padma</au><au>Panda, Ganapati</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Sparse auto-encoder based micro-aneurysm detection</atitle><btitle>AIP conference proceedings</btitle><date>2023-10-13</date><risdate>2023</risdate><volume>2904</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Microaneurysms (MAs) are the early noticeable lesions in retina, their detection plays a crucial role in the diagnosis of diabetic retinopathy. Here the discriminative features are automatically learned in an unsupervised manner. The stacked sparse auto-encoder (SSAE) is effective at learning high-level features from overlapping image patches during training. Using 10-fold cross-validation and fine-tuning yield an improved F-measure of 97.3% and an average area under the ROC curve (AUC) 96.7% obtained. Experimental validation is performed, both quantitative and qualitative, in the public datasetDIARETDB1. The result achieved a better accuracy compared to other methods.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0170568</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2904 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0170568
source AIP Journals Complete
subjects Coders
title Sparse auto-encoder based micro-aneurysm detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A34%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Sparse%20auto-encoder%20based%20micro-aneurysm%20detection&rft.btitle=AIP%20conference%20proceedings&rft.au=Bindhya,%20P.%20S.&rft.date=2023-10-13&rft.volume=2904&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0170568&rft_dat=%3Cproquest_scita%3E2876723912%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2876723912&rft_id=info:pmid/&rfr_iscdi=true