A strategy for improving the stability of platinum-containing electrocatalyst toward hydrogen production in industrial alkaline water electrolysis
Significant breakthroughs have recently been made in boosting the hydrogen evolution reaction (HER) of Pt-containing electrocatalysts; however, it is unclear whether they can withstand long-term operational durability under the harsh industrial conditions, especially when driven by intermittent rene...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2023-09, Vol.123 (13) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 13 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 123 |
creator | Shen, Junxia Jin, Qingfeng Chen, Cong Xu, Shunshun An, Tai Wei, Zhihe Dong, Wen Fan, Ronglei Shen, Mingrong |
description | Significant breakthroughs have recently been made in boosting the hydrogen evolution reaction (HER) of Pt-containing electrocatalysts; however, it is unclear whether they can withstand long-term operational durability under the harsh industrial conditions, especially when driven by intermittent renewable energy. Here, a Pt-containing cathode was prepared by brushing a Pt–Ni solution onto Ni mesh (NM) (denoted as Pt–Ni/NM) and paired with a NM anode to study its stability under simulated industrial conditions (30 wt. % KOH, 60 °C). The assembled electrolyzer shows superior performance of water splitting, operating constantly under ∼500 mA/cm2 when the cell voltage is kept at 1.71 V. Unfortunately, the HER activity of the cathode degrades obviously when the cell voltage is under the “on/off” (1.71 V/0 V) states when simulating the supply of intermittent renewable energy. Comprehensive analyses revealed that the decline was attributed to the galvanic corrosion owing to the difference in redox potential between Ni and Pt. When the applied protective voltage on the “off” state exceeds such potential (∼0.58 V), the corrosion can be effectively alleviated, extending the stability to over 400 h. Furthermore, this protective strategy also shows effectiveness in improving the stability of other systems (e.g., Co–Ni), offering a promising way for practical applications in industrial alkaline water electrolysis. |
doi_str_mv | 10.1063/5.0169722 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0169722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2869341752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-2ce5b011105ed1515301024eabe92ecadf52f65e94c25b91f7f664c7828586d83</originalsourceid><addsrcrecordid>eNp9kN1KAzEQhYMoWKsXvkHAK4Wt-dlkdy9L8Q8K3uj1ks0mbWqa1CRr2dfwiU2p3goDwzAf58wcAK4xmmHE6T2bIcybipATMMGoqgqKcX0KJgghWvCG4XNwEeMmj4xQOgHfcxhTEEmtRqh9gGa7C_7LuBVMa5VXojPWpBF6DXdWJOOGbSG9S8K4A6Sskil4KZKwY0ww-b0IPVyPffAr5WAW6weZjHfQHKofspsRFgr7IaxxCu6zd_jTyRomXoIzLWxUV799Ct4fH94Wz8Xy9ellMV8WkjCSCiIV6xDGGDHVY4YZRRiRUolONURJ0WtGNGeqKTPfNVhXmvNSVjWpWc37mk7BzVE3H_k5qJjajR-Cy5YtqXlDS1zljKbg9kjJ4GMMSre7YLYijC1G7SHylrW_kWf27shGaZI4fP0P_AN8qoSW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869341752</pqid></control><display><type>article</type><title>A strategy for improving the stability of platinum-containing electrocatalyst toward hydrogen production in industrial alkaline water electrolysis</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Shen, Junxia ; Jin, Qingfeng ; Chen, Cong ; Xu, Shunshun ; An, Tai ; Wei, Zhihe ; Dong, Wen ; Fan, Ronglei ; Shen, Mingrong</creator><creatorcontrib>Shen, Junxia ; Jin, Qingfeng ; Chen, Cong ; Xu, Shunshun ; An, Tai ; Wei, Zhihe ; Dong, Wen ; Fan, Ronglei ; Shen, Mingrong</creatorcontrib><description>Significant breakthroughs have recently been made in boosting the hydrogen evolution reaction (HER) of Pt-containing electrocatalysts; however, it is unclear whether they can withstand long-term operational durability under the harsh industrial conditions, especially when driven by intermittent renewable energy. Here, a Pt-containing cathode was prepared by brushing a Pt–Ni solution onto Ni mesh (NM) (denoted as Pt–Ni/NM) and paired with a NM anode to study its stability under simulated industrial conditions (30 wt. % KOH, 60 °C). The assembled electrolyzer shows superior performance of water splitting, operating constantly under ∼500 mA/cm2 when the cell voltage is kept at 1.71 V. Unfortunately, the HER activity of the cathode degrades obviously when the cell voltage is under the “on/off” (1.71 V/0 V) states when simulating the supply of intermittent renewable energy. Comprehensive analyses revealed that the decline was attributed to the galvanic corrosion owing to the difference in redox potential between Ni and Pt. When the applied protective voltage on the “off” state exceeds such potential (∼0.58 V), the corrosion can be effectively alleviated, extending the stability to over 400 h. Furthermore, this protective strategy also shows effectiveness in improving the stability of other systems (e.g., Co–Ni), offering a promising way for practical applications in industrial alkaline water electrolysis.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0169722</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Cathodes ; Electric potential ; Electrocatalysts ; Electrolysis ; Finite element method ; Galvanic corrosion ; Hydrogen evolution reactions ; Hydrogen production ; Industrial applications ; Platinum ; Renewable energy ; Renewable resources ; Stability ; System effectiveness ; Voltage ; Water splitting</subject><ispartof>Applied physics letters, 2023-09, Vol.123 (13)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-2ce5b011105ed1515301024eabe92ecadf52f65e94c25b91f7f664c7828586d83</cites><orcidid>0000-0001-7741-746X ; 0000-0003-1823-5345 ; 0009-0004-2142-212X ; 0009-0008-3488-1105 ; 0009-0003-9554-1108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0169722$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4510,27922,27923,76154</link.rule.ids></links><search><creatorcontrib>Shen, Junxia</creatorcontrib><creatorcontrib>Jin, Qingfeng</creatorcontrib><creatorcontrib>Chen, Cong</creatorcontrib><creatorcontrib>Xu, Shunshun</creatorcontrib><creatorcontrib>An, Tai</creatorcontrib><creatorcontrib>Wei, Zhihe</creatorcontrib><creatorcontrib>Dong, Wen</creatorcontrib><creatorcontrib>Fan, Ronglei</creatorcontrib><creatorcontrib>Shen, Mingrong</creatorcontrib><title>A strategy for improving the stability of platinum-containing electrocatalyst toward hydrogen production in industrial alkaline water electrolysis</title><title>Applied physics letters</title><description>Significant breakthroughs have recently been made in boosting the hydrogen evolution reaction (HER) of Pt-containing electrocatalysts; however, it is unclear whether they can withstand long-term operational durability under the harsh industrial conditions, especially when driven by intermittent renewable energy. Here, a Pt-containing cathode was prepared by brushing a Pt–Ni solution onto Ni mesh (NM) (denoted as Pt–Ni/NM) and paired with a NM anode to study its stability under simulated industrial conditions (30 wt. % KOH, 60 °C). The assembled electrolyzer shows superior performance of water splitting, operating constantly under ∼500 mA/cm2 when the cell voltage is kept at 1.71 V. Unfortunately, the HER activity of the cathode degrades obviously when the cell voltage is under the “on/off” (1.71 V/0 V) states when simulating the supply of intermittent renewable energy. Comprehensive analyses revealed that the decline was attributed to the galvanic corrosion owing to the difference in redox potential between Ni and Pt. When the applied protective voltage on the “off” state exceeds such potential (∼0.58 V), the corrosion can be effectively alleviated, extending the stability to over 400 h. Furthermore, this protective strategy also shows effectiveness in improving the stability of other systems (e.g., Co–Ni), offering a promising way for practical applications in industrial alkaline water electrolysis.</description><subject>Applied physics</subject><subject>Cathodes</subject><subject>Electric potential</subject><subject>Electrocatalysts</subject><subject>Electrolysis</subject><subject>Finite element method</subject><subject>Galvanic corrosion</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>Industrial applications</subject><subject>Platinum</subject><subject>Renewable energy</subject><subject>Renewable resources</subject><subject>Stability</subject><subject>System effectiveness</subject><subject>Voltage</subject><subject>Water splitting</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kN1KAzEQhYMoWKsXvkHAK4Wt-dlkdy9L8Q8K3uj1ks0mbWqa1CRr2dfwiU2p3goDwzAf58wcAK4xmmHE6T2bIcybipATMMGoqgqKcX0KJgghWvCG4XNwEeMmj4xQOgHfcxhTEEmtRqh9gGa7C_7LuBVMa5VXojPWpBF6DXdWJOOGbSG9S8K4A6Sskil4KZKwY0ww-b0IPVyPffAr5WAW6weZjHfQHKofspsRFgr7IaxxCu6zd_jTyRomXoIzLWxUV799Ct4fH94Wz8Xy9ellMV8WkjCSCiIV6xDGGDHVY4YZRRiRUolONURJ0WtGNGeqKTPfNVhXmvNSVjWpWc37mk7BzVE3H_k5qJjajR-Cy5YtqXlDS1zljKbg9kjJ4GMMSre7YLYijC1G7SHylrW_kWf27shGaZI4fP0P_AN8qoSW</recordid><startdate>20230925</startdate><enddate>20230925</enddate><creator>Shen, Junxia</creator><creator>Jin, Qingfeng</creator><creator>Chen, Cong</creator><creator>Xu, Shunshun</creator><creator>An, Tai</creator><creator>Wei, Zhihe</creator><creator>Dong, Wen</creator><creator>Fan, Ronglei</creator><creator>Shen, Mingrong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7741-746X</orcidid><orcidid>https://orcid.org/0000-0003-1823-5345</orcidid><orcidid>https://orcid.org/0009-0004-2142-212X</orcidid><orcidid>https://orcid.org/0009-0008-3488-1105</orcidid><orcidid>https://orcid.org/0009-0003-9554-1108</orcidid></search><sort><creationdate>20230925</creationdate><title>A strategy for improving the stability of platinum-containing electrocatalyst toward hydrogen production in industrial alkaline water electrolysis</title><author>Shen, Junxia ; Jin, Qingfeng ; Chen, Cong ; Xu, Shunshun ; An, Tai ; Wei, Zhihe ; Dong, Wen ; Fan, Ronglei ; Shen, Mingrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-2ce5b011105ed1515301024eabe92ecadf52f65e94c25b91f7f664c7828586d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Cathodes</topic><topic>Electric potential</topic><topic>Electrocatalysts</topic><topic>Electrolysis</topic><topic>Finite element method</topic><topic>Galvanic corrosion</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>Industrial applications</topic><topic>Platinum</topic><topic>Renewable energy</topic><topic>Renewable resources</topic><topic>Stability</topic><topic>System effectiveness</topic><topic>Voltage</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Junxia</creatorcontrib><creatorcontrib>Jin, Qingfeng</creatorcontrib><creatorcontrib>Chen, Cong</creatorcontrib><creatorcontrib>Xu, Shunshun</creatorcontrib><creatorcontrib>An, Tai</creatorcontrib><creatorcontrib>Wei, Zhihe</creatorcontrib><creatorcontrib>Dong, Wen</creatorcontrib><creatorcontrib>Fan, Ronglei</creatorcontrib><creatorcontrib>Shen, Mingrong</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Junxia</au><au>Jin, Qingfeng</au><au>Chen, Cong</au><au>Xu, Shunshun</au><au>An, Tai</au><au>Wei, Zhihe</au><au>Dong, Wen</au><au>Fan, Ronglei</au><au>Shen, Mingrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A strategy for improving the stability of platinum-containing electrocatalyst toward hydrogen production in industrial alkaline water electrolysis</atitle><jtitle>Applied physics letters</jtitle><date>2023-09-25</date><risdate>2023</risdate><volume>123</volume><issue>13</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Significant breakthroughs have recently been made in boosting the hydrogen evolution reaction (HER) of Pt-containing electrocatalysts; however, it is unclear whether they can withstand long-term operational durability under the harsh industrial conditions, especially when driven by intermittent renewable energy. Here, a Pt-containing cathode was prepared by brushing a Pt–Ni solution onto Ni mesh (NM) (denoted as Pt–Ni/NM) and paired with a NM anode to study its stability under simulated industrial conditions (30 wt. % KOH, 60 °C). The assembled electrolyzer shows superior performance of water splitting, operating constantly under ∼500 mA/cm2 when the cell voltage is kept at 1.71 V. Unfortunately, the HER activity of the cathode degrades obviously when the cell voltage is under the “on/off” (1.71 V/0 V) states when simulating the supply of intermittent renewable energy. Comprehensive analyses revealed that the decline was attributed to the galvanic corrosion owing to the difference in redox potential between Ni and Pt. When the applied protective voltage on the “off” state exceeds such potential (∼0.58 V), the corrosion can be effectively alleviated, extending the stability to over 400 h. Furthermore, this protective strategy also shows effectiveness in improving the stability of other systems (e.g., Co–Ni), offering a promising way for practical applications in industrial alkaline water electrolysis.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0169722</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7741-746X</orcidid><orcidid>https://orcid.org/0000-0003-1823-5345</orcidid><orcidid>https://orcid.org/0009-0004-2142-212X</orcidid><orcidid>https://orcid.org/0009-0008-3488-1105</orcidid><orcidid>https://orcid.org/0009-0003-9554-1108</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2023-09, Vol.123 (13) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0169722 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Cathodes Electric potential Electrocatalysts Electrolysis Finite element method Galvanic corrosion Hydrogen evolution reactions Hydrogen production Industrial applications Platinum Renewable energy Renewable resources Stability System effectiveness Voltage Water splitting |
title | A strategy for improving the stability of platinum-containing electrocatalyst toward hydrogen production in industrial alkaline water electrolysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A55%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20strategy%20for%20improving%20the%20stability%20of%20platinum-containing%20electrocatalyst%20toward%20hydrogen%20production%20in%20industrial%20alkaline%20water%20electrolysis&rft.jtitle=Applied%20physics%20letters&rft.au=Shen,%20Junxia&rft.date=2023-09-25&rft.volume=123&rft.issue=13&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0169722&rft_dat=%3Cproquest_scita%3E2869341752%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2869341752&rft_id=info:pmid/&rfr_iscdi=true |