A strategy for improving the stability of platinum-containing electrocatalyst toward hydrogen production in industrial alkaline water electrolysis

Significant breakthroughs have recently been made in boosting the hydrogen evolution reaction (HER) of Pt-containing electrocatalysts; however, it is unclear whether they can withstand long-term operational durability under the harsh industrial conditions, especially when driven by intermittent rene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2023-09, Vol.123 (13)
Hauptverfasser: Shen, Junxia, Jin, Qingfeng, Chen, Cong, Xu, Shunshun, An, Tai, Wei, Zhihe, Dong, Wen, Fan, Ronglei, Shen, Mingrong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page
container_title Applied physics letters
container_volume 123
creator Shen, Junxia
Jin, Qingfeng
Chen, Cong
Xu, Shunshun
An, Tai
Wei, Zhihe
Dong, Wen
Fan, Ronglei
Shen, Mingrong
description Significant breakthroughs have recently been made in boosting the hydrogen evolution reaction (HER) of Pt-containing electrocatalysts; however, it is unclear whether they can withstand long-term operational durability under the harsh industrial conditions, especially when driven by intermittent renewable energy. Here, a Pt-containing cathode was prepared by brushing a Pt–Ni solution onto Ni mesh (NM) (denoted as Pt–Ni/NM) and paired with a NM anode to study its stability under simulated industrial conditions (30 wt. % KOH, 60 °C). The assembled electrolyzer shows superior performance of water splitting, operating constantly under ∼500 mA/cm2 when the cell voltage is kept at 1.71 V. Unfortunately, the HER activity of the cathode degrades obviously when the cell voltage is under the “on/off” (1.71 V/0 V) states when simulating the supply of intermittent renewable energy. Comprehensive analyses revealed that the decline was attributed to the galvanic corrosion owing to the difference in redox potential between Ni and Pt. When the applied protective voltage on the “off” state exceeds such potential (∼0.58 V), the corrosion can be effectively alleviated, extending the stability to over 400 h. Furthermore, this protective strategy also shows effectiveness in improving the stability of other systems (e.g., Co–Ni), offering a promising way for practical applications in industrial alkaline water electrolysis.
doi_str_mv 10.1063/5.0169722
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0169722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2869341752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-2ce5b011105ed1515301024eabe92ecadf52f65e94c25b91f7f664c7828586d83</originalsourceid><addsrcrecordid>eNp9kN1KAzEQhYMoWKsXvkHAK4Wt-dlkdy9L8Q8K3uj1ks0mbWqa1CRr2dfwiU2p3goDwzAf58wcAK4xmmHE6T2bIcybipATMMGoqgqKcX0KJgghWvCG4XNwEeMmj4xQOgHfcxhTEEmtRqh9gGa7C_7LuBVMa5VXojPWpBF6DXdWJOOGbSG9S8K4A6Sskil4KZKwY0ww-b0IPVyPffAr5WAW6weZjHfQHKofspsRFgr7IaxxCu6zd_jTyRomXoIzLWxUV799Ct4fH94Wz8Xy9ellMV8WkjCSCiIV6xDGGDHVY4YZRRiRUolONURJ0WtGNGeqKTPfNVhXmvNSVjWpWc37mk7BzVE3H_k5qJjajR-Cy5YtqXlDS1zljKbg9kjJ4GMMSre7YLYijC1G7SHylrW_kWf27shGaZI4fP0P_AN8qoSW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869341752</pqid></control><display><type>article</type><title>A strategy for improving the stability of platinum-containing electrocatalyst toward hydrogen production in industrial alkaline water electrolysis</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Shen, Junxia ; Jin, Qingfeng ; Chen, Cong ; Xu, Shunshun ; An, Tai ; Wei, Zhihe ; Dong, Wen ; Fan, Ronglei ; Shen, Mingrong</creator><creatorcontrib>Shen, Junxia ; Jin, Qingfeng ; Chen, Cong ; Xu, Shunshun ; An, Tai ; Wei, Zhihe ; Dong, Wen ; Fan, Ronglei ; Shen, Mingrong</creatorcontrib><description>Significant breakthroughs have recently been made in boosting the hydrogen evolution reaction (HER) of Pt-containing electrocatalysts; however, it is unclear whether they can withstand long-term operational durability under the harsh industrial conditions, especially when driven by intermittent renewable energy. Here, a Pt-containing cathode was prepared by brushing a Pt–Ni solution onto Ni mesh (NM) (denoted as Pt–Ni/NM) and paired with a NM anode to study its stability under simulated industrial conditions (30 wt. % KOH, 60 °C). The assembled electrolyzer shows superior performance of water splitting, operating constantly under ∼500 mA/cm2 when the cell voltage is kept at 1.71 V. Unfortunately, the HER activity of the cathode degrades obviously when the cell voltage is under the “on/off” (1.71 V/0 V) states when simulating the supply of intermittent renewable energy. Comprehensive analyses revealed that the decline was attributed to the galvanic corrosion owing to the difference in redox potential between Ni and Pt. When the applied protective voltage on the “off” state exceeds such potential (∼0.58 V), the corrosion can be effectively alleviated, extending the stability to over 400 h. Furthermore, this protective strategy also shows effectiveness in improving the stability of other systems (e.g., Co–Ni), offering a promising way for practical applications in industrial alkaline water electrolysis.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0169722</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Cathodes ; Electric potential ; Electrocatalysts ; Electrolysis ; Finite element method ; Galvanic corrosion ; Hydrogen evolution reactions ; Hydrogen production ; Industrial applications ; Platinum ; Renewable energy ; Renewable resources ; Stability ; System effectiveness ; Voltage ; Water splitting</subject><ispartof>Applied physics letters, 2023-09, Vol.123 (13)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-2ce5b011105ed1515301024eabe92ecadf52f65e94c25b91f7f664c7828586d83</cites><orcidid>0000-0001-7741-746X ; 0000-0003-1823-5345 ; 0009-0004-2142-212X ; 0009-0008-3488-1105 ; 0009-0003-9554-1108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0169722$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4510,27922,27923,76154</link.rule.ids></links><search><creatorcontrib>Shen, Junxia</creatorcontrib><creatorcontrib>Jin, Qingfeng</creatorcontrib><creatorcontrib>Chen, Cong</creatorcontrib><creatorcontrib>Xu, Shunshun</creatorcontrib><creatorcontrib>An, Tai</creatorcontrib><creatorcontrib>Wei, Zhihe</creatorcontrib><creatorcontrib>Dong, Wen</creatorcontrib><creatorcontrib>Fan, Ronglei</creatorcontrib><creatorcontrib>Shen, Mingrong</creatorcontrib><title>A strategy for improving the stability of platinum-containing electrocatalyst toward hydrogen production in industrial alkaline water electrolysis</title><title>Applied physics letters</title><description>Significant breakthroughs have recently been made in boosting the hydrogen evolution reaction (HER) of Pt-containing electrocatalysts; however, it is unclear whether they can withstand long-term operational durability under the harsh industrial conditions, especially when driven by intermittent renewable energy. Here, a Pt-containing cathode was prepared by brushing a Pt–Ni solution onto Ni mesh (NM) (denoted as Pt–Ni/NM) and paired with a NM anode to study its stability under simulated industrial conditions (30 wt. % KOH, 60 °C). The assembled electrolyzer shows superior performance of water splitting, operating constantly under ∼500 mA/cm2 when the cell voltage is kept at 1.71 V. Unfortunately, the HER activity of the cathode degrades obviously when the cell voltage is under the “on/off” (1.71 V/0 V) states when simulating the supply of intermittent renewable energy. Comprehensive analyses revealed that the decline was attributed to the galvanic corrosion owing to the difference in redox potential between Ni and Pt. When the applied protective voltage on the “off” state exceeds such potential (∼0.58 V), the corrosion can be effectively alleviated, extending the stability to over 400 h. Furthermore, this protective strategy also shows effectiveness in improving the stability of other systems (e.g., Co–Ni), offering a promising way for practical applications in industrial alkaline water electrolysis.</description><subject>Applied physics</subject><subject>Cathodes</subject><subject>Electric potential</subject><subject>Electrocatalysts</subject><subject>Electrolysis</subject><subject>Finite element method</subject><subject>Galvanic corrosion</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>Industrial applications</subject><subject>Platinum</subject><subject>Renewable energy</subject><subject>Renewable resources</subject><subject>Stability</subject><subject>System effectiveness</subject><subject>Voltage</subject><subject>Water splitting</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kN1KAzEQhYMoWKsXvkHAK4Wt-dlkdy9L8Q8K3uj1ks0mbWqa1CRr2dfwiU2p3goDwzAf58wcAK4xmmHE6T2bIcybipATMMGoqgqKcX0KJgghWvCG4XNwEeMmj4xQOgHfcxhTEEmtRqh9gGa7C_7LuBVMa5VXojPWpBF6DXdWJOOGbSG9S8K4A6Sskil4KZKwY0ww-b0IPVyPffAr5WAW6weZjHfQHKofspsRFgr7IaxxCu6zd_jTyRomXoIzLWxUV799Ct4fH94Wz8Xy9ellMV8WkjCSCiIV6xDGGDHVY4YZRRiRUolONURJ0WtGNGeqKTPfNVhXmvNSVjWpWc37mk7BzVE3H_k5qJjajR-Cy5YtqXlDS1zljKbg9kjJ4GMMSre7YLYijC1G7SHylrW_kWf27shGaZI4fP0P_AN8qoSW</recordid><startdate>20230925</startdate><enddate>20230925</enddate><creator>Shen, Junxia</creator><creator>Jin, Qingfeng</creator><creator>Chen, Cong</creator><creator>Xu, Shunshun</creator><creator>An, Tai</creator><creator>Wei, Zhihe</creator><creator>Dong, Wen</creator><creator>Fan, Ronglei</creator><creator>Shen, Mingrong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7741-746X</orcidid><orcidid>https://orcid.org/0000-0003-1823-5345</orcidid><orcidid>https://orcid.org/0009-0004-2142-212X</orcidid><orcidid>https://orcid.org/0009-0008-3488-1105</orcidid><orcidid>https://orcid.org/0009-0003-9554-1108</orcidid></search><sort><creationdate>20230925</creationdate><title>A strategy for improving the stability of platinum-containing electrocatalyst toward hydrogen production in industrial alkaline water electrolysis</title><author>Shen, Junxia ; Jin, Qingfeng ; Chen, Cong ; Xu, Shunshun ; An, Tai ; Wei, Zhihe ; Dong, Wen ; Fan, Ronglei ; Shen, Mingrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-2ce5b011105ed1515301024eabe92ecadf52f65e94c25b91f7f664c7828586d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Cathodes</topic><topic>Electric potential</topic><topic>Electrocatalysts</topic><topic>Electrolysis</topic><topic>Finite element method</topic><topic>Galvanic corrosion</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>Industrial applications</topic><topic>Platinum</topic><topic>Renewable energy</topic><topic>Renewable resources</topic><topic>Stability</topic><topic>System effectiveness</topic><topic>Voltage</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Junxia</creatorcontrib><creatorcontrib>Jin, Qingfeng</creatorcontrib><creatorcontrib>Chen, Cong</creatorcontrib><creatorcontrib>Xu, Shunshun</creatorcontrib><creatorcontrib>An, Tai</creatorcontrib><creatorcontrib>Wei, Zhihe</creatorcontrib><creatorcontrib>Dong, Wen</creatorcontrib><creatorcontrib>Fan, Ronglei</creatorcontrib><creatorcontrib>Shen, Mingrong</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Junxia</au><au>Jin, Qingfeng</au><au>Chen, Cong</au><au>Xu, Shunshun</au><au>An, Tai</au><au>Wei, Zhihe</au><au>Dong, Wen</au><au>Fan, Ronglei</au><au>Shen, Mingrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A strategy for improving the stability of platinum-containing electrocatalyst toward hydrogen production in industrial alkaline water electrolysis</atitle><jtitle>Applied physics letters</jtitle><date>2023-09-25</date><risdate>2023</risdate><volume>123</volume><issue>13</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Significant breakthroughs have recently been made in boosting the hydrogen evolution reaction (HER) of Pt-containing electrocatalysts; however, it is unclear whether they can withstand long-term operational durability under the harsh industrial conditions, especially when driven by intermittent renewable energy. Here, a Pt-containing cathode was prepared by brushing a Pt–Ni solution onto Ni mesh (NM) (denoted as Pt–Ni/NM) and paired with a NM anode to study its stability under simulated industrial conditions (30 wt. % KOH, 60 °C). The assembled electrolyzer shows superior performance of water splitting, operating constantly under ∼500 mA/cm2 when the cell voltage is kept at 1.71 V. Unfortunately, the HER activity of the cathode degrades obviously when the cell voltage is under the “on/off” (1.71 V/0 V) states when simulating the supply of intermittent renewable energy. Comprehensive analyses revealed that the decline was attributed to the galvanic corrosion owing to the difference in redox potential between Ni and Pt. When the applied protective voltage on the “off” state exceeds such potential (∼0.58 V), the corrosion can be effectively alleviated, extending the stability to over 400 h. Furthermore, this protective strategy also shows effectiveness in improving the stability of other systems (e.g., Co–Ni), offering a promising way for practical applications in industrial alkaline water electrolysis.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0169722</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7741-746X</orcidid><orcidid>https://orcid.org/0000-0003-1823-5345</orcidid><orcidid>https://orcid.org/0009-0004-2142-212X</orcidid><orcidid>https://orcid.org/0009-0008-3488-1105</orcidid><orcidid>https://orcid.org/0009-0003-9554-1108</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2023-09, Vol.123 (13)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_5_0169722
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Cathodes
Electric potential
Electrocatalysts
Electrolysis
Finite element method
Galvanic corrosion
Hydrogen evolution reactions
Hydrogen production
Industrial applications
Platinum
Renewable energy
Renewable resources
Stability
System effectiveness
Voltage
Water splitting
title A strategy for improving the stability of platinum-containing electrocatalyst toward hydrogen production in industrial alkaline water electrolysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A55%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20strategy%20for%20improving%20the%20stability%20of%20platinum-containing%20electrocatalyst%20toward%20hydrogen%20production%20in%20industrial%20alkaline%20water%20electrolysis&rft.jtitle=Applied%20physics%20letters&rft.au=Shen,%20Junxia&rft.date=2023-09-25&rft.volume=123&rft.issue=13&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0169722&rft_dat=%3Cproquest_scita%3E2869341752%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2869341752&rft_id=info:pmid/&rfr_iscdi=true