Drug recommendation system based on analysis of drug reviews using machine learning
Since COVID has appeared, unavailability of genuine clinical assets is at its pinnacle, similar to the lack of subject matter experts and medical services laborers, absence of legitimate hardware and prescriptions and so on. The whole clinical crew is in trouble, which brings about various person’s...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2869 |
creator | Koganti, Gunakar Edupuganti, Sneha Shaik, Azajuddin Meena, S. Divya |
description | Since COVID has appeared, unavailability of genuine clinical assets is at its pinnacle, similar to the lack of subject matter experts and medical services laborers, absence of legitimate hardware and prescriptions and so on. The whole clinical crew is in trouble, which brings about various person’s downfall. Because of inaccessibility, people began taking prescription freely without proper meeting, aggravating the wellbeing than expected. This paper is regarding introduction of a medication recommendation framework, which can definitely lessen experts’ stack. In this exploration, we construct a medication suggestion framework that utilizes patient audits to foresee the opinion utilizing different machine learning classifier such as naïve Bayes classifier which can assist with suggesting the top medication for a given illness by various grouping calculations. The anticipated opinions were assessed by accuracy, review, f1score and accuracy. The outcomes show that with N-gram, Light GBM and naïve bayes we can acquire a 90% accuracy. |
doi_str_mv | 10.1063/5.0168205 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0168205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2882584568</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-19849bce068616cdb0ee40aa61eb254ec0ea9ff2c2c1ac7aa649aa44525711ae3</originalsourceid><addsrcrecordid>eNotkM1LxDAQxYMoWFcP_gcBb0LXJE3S9CjrJyx4UMFbmKbTNUs_1qRV9r-32j0NM_Pj8d4j5JKzJWc6u1FLxrURTB2RhCvF01xzfUwSxgqZCpl9nJKzGLeMiSLPTUJe78K4oQFd37bYVTD4vqNxHwdsaQkRKzrt0EGzjz7SvqbVzH97_Il0jL7b0Bbcp--QNgihmw7n5KSGJuLFYS7I-8P92-opXb88Pq9u1-mOZ9mQ8sLIonTItJk8uqpkiJIBaI6lUBIdQyjqWjjhOLh8esgCQEolVM45YLYgV7PuLvRfI8bBbvsxTF6jFcYIZaTSZqKuZyo6P_zns7vgWwh7y5n9K80qeygt-wVgWV9y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2882584568</pqid></control><display><type>conference_proceeding</type><title>Drug recommendation system based on analysis of drug reviews using machine learning</title><source>AIP Journals Complete</source><creator>Koganti, Gunakar ; Edupuganti, Sneha ; Shaik, Azajuddin ; Meena, S. Divya</creator><contributor>Reddy, B Damodhara ; Ferro, Paolo ; Babu, B. Sridhar ; Malasri, Siripong Pong ; Kumar, Kaushik ; Babu, Matam Mohan ; Vemanaboina, Harinadh</contributor><creatorcontrib>Koganti, Gunakar ; Edupuganti, Sneha ; Shaik, Azajuddin ; Meena, S. Divya ; Reddy, B Damodhara ; Ferro, Paolo ; Babu, B. Sridhar ; Malasri, Siripong Pong ; Kumar, Kaushik ; Babu, Matam Mohan ; Vemanaboina, Harinadh</creatorcontrib><description>Since COVID has appeared, unavailability of genuine clinical assets is at its pinnacle, similar to the lack of subject matter experts and medical services laborers, absence of legitimate hardware and prescriptions and so on. The whole clinical crew is in trouble, which brings about various person’s downfall. Because of inaccessibility, people began taking prescription freely without proper meeting, aggravating the wellbeing than expected. This paper is regarding introduction of a medication recommendation framework, which can definitely lessen experts’ stack. In this exploration, we construct a medication suggestion framework that utilizes patient audits to foresee the opinion utilizing different machine learning classifier such as naïve Bayes classifier which can assist with suggesting the top medication for a given illness by various grouping calculations. The anticipated opinions were assessed by accuracy, review, f1score and accuracy. The outcomes show that with N-gram, Light GBM and naïve bayes we can acquire a 90% accuracy.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0168205</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Classifiers ; Machine learning ; Recommender systems</subject><ispartof>AIP Conference Proceedings, 2023, Vol.2869 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0168205$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Reddy, B Damodhara</contributor><contributor>Ferro, Paolo</contributor><contributor>Babu, B. Sridhar</contributor><contributor>Malasri, Siripong Pong</contributor><contributor>Kumar, Kaushik</contributor><contributor>Babu, Matam Mohan</contributor><contributor>Vemanaboina, Harinadh</contributor><creatorcontrib>Koganti, Gunakar</creatorcontrib><creatorcontrib>Edupuganti, Sneha</creatorcontrib><creatorcontrib>Shaik, Azajuddin</creatorcontrib><creatorcontrib>Meena, S. Divya</creatorcontrib><title>Drug recommendation system based on analysis of drug reviews using machine learning</title><title>AIP Conference Proceedings</title><description>Since COVID has appeared, unavailability of genuine clinical assets is at its pinnacle, similar to the lack of subject matter experts and medical services laborers, absence of legitimate hardware and prescriptions and so on. The whole clinical crew is in trouble, which brings about various person’s downfall. Because of inaccessibility, people began taking prescription freely without proper meeting, aggravating the wellbeing than expected. This paper is regarding introduction of a medication recommendation framework, which can definitely lessen experts’ stack. In this exploration, we construct a medication suggestion framework that utilizes patient audits to foresee the opinion utilizing different machine learning classifier such as naïve Bayes classifier which can assist with suggesting the top medication for a given illness by various grouping calculations. The anticipated opinions were assessed by accuracy, review, f1score and accuracy. The outcomes show that with N-gram, Light GBM and naïve bayes we can acquire a 90% accuracy.</description><subject>Classifiers</subject><subject>Machine learning</subject><subject>Recommender systems</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkM1LxDAQxYMoWFcP_gcBb0LXJE3S9CjrJyx4UMFbmKbTNUs_1qRV9r-32j0NM_Pj8d4j5JKzJWc6u1FLxrURTB2RhCvF01xzfUwSxgqZCpl9nJKzGLeMiSLPTUJe78K4oQFd37bYVTD4vqNxHwdsaQkRKzrt0EGzjz7SvqbVzH97_Il0jL7b0Bbcp--QNgihmw7n5KSGJuLFYS7I-8P92-opXb88Pq9u1-mOZ9mQ8sLIonTItJk8uqpkiJIBaI6lUBIdQyjqWjjhOLh8esgCQEolVM45YLYgV7PuLvRfI8bBbvsxTF6jFcYIZaTSZqKuZyo6P_zns7vgWwh7y5n9K80qeygt-wVgWV9y</recordid><startdate>20231027</startdate><enddate>20231027</enddate><creator>Koganti, Gunakar</creator><creator>Edupuganti, Sneha</creator><creator>Shaik, Azajuddin</creator><creator>Meena, S. Divya</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231027</creationdate><title>Drug recommendation system based on analysis of drug reviews using machine learning</title><author>Koganti, Gunakar ; Edupuganti, Sneha ; Shaik, Azajuddin ; Meena, S. Divya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-19849bce068616cdb0ee40aa61eb254ec0ea9ff2c2c1ac7aa649aa44525711ae3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Classifiers</topic><topic>Machine learning</topic><topic>Recommender systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koganti, Gunakar</creatorcontrib><creatorcontrib>Edupuganti, Sneha</creatorcontrib><creatorcontrib>Shaik, Azajuddin</creatorcontrib><creatorcontrib>Meena, S. Divya</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koganti, Gunakar</au><au>Edupuganti, Sneha</au><au>Shaik, Azajuddin</au><au>Meena, S. Divya</au><au>Reddy, B Damodhara</au><au>Ferro, Paolo</au><au>Babu, B. Sridhar</au><au>Malasri, Siripong Pong</au><au>Kumar, Kaushik</au><au>Babu, Matam Mohan</au><au>Vemanaboina, Harinadh</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Drug recommendation system based on analysis of drug reviews using machine learning</atitle><btitle>AIP Conference Proceedings</btitle><date>2023-10-27</date><risdate>2023</risdate><volume>2869</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Since COVID has appeared, unavailability of genuine clinical assets is at its pinnacle, similar to the lack of subject matter experts and medical services laborers, absence of legitimate hardware and prescriptions and so on. The whole clinical crew is in trouble, which brings about various person’s downfall. Because of inaccessibility, people began taking prescription freely without proper meeting, aggravating the wellbeing than expected. This paper is regarding introduction of a medication recommendation framework, which can definitely lessen experts’ stack. In this exploration, we construct a medication suggestion framework that utilizes patient audits to foresee the opinion utilizing different machine learning classifier such as naïve Bayes classifier which can assist with suggesting the top medication for a given illness by various grouping calculations. The anticipated opinions were assessed by accuracy, review, f1score and accuracy. The outcomes show that with N-gram, Light GBM and naïve bayes we can acquire a 90% accuracy.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0168205</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2023, Vol.2869 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0168205 |
source | AIP Journals Complete |
subjects | Classifiers Machine learning Recommender systems |
title | Drug recommendation system based on analysis of drug reviews using machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A13%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Drug%20recommendation%20system%20based%20on%20analysis%20of%20drug%20reviews%20using%20machine%20learning&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Koganti,%20Gunakar&rft.date=2023-10-27&rft.volume=2869&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0168205&rft_dat=%3Cproquest_scita%3E2882584568%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2882584568&rft_id=info:pmid/&rfr_iscdi=true |