A cascaded convolutional neural networks for stroke detection imaging
In recent years, electrical impedance tomography has widely been used in stroke detection. To improve the prediction accuracy and anti-noise ability of the system, the inverse problem of electrical impedance tomography needs to be solved, for which cascade convolutional neural networks are used. The...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2023-11, Vol.94 (11) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Review of scientific instruments |
container_volume | 94 |
creator | Liu, Jinzhen He, Xiaochuan Xiong, Hui |
description | In recent years, electrical impedance tomography has widely been used in stroke detection. To improve the prediction accuracy and anti-noise ability of the system, the inverse problem of electrical impedance tomography needs to be solved, for which cascade convolutional neural networks are used. The proposed network is divided into two parts so that the advantages can be compounded when parts of a network are cascaded together. To get high-resolution imaging, an optimized network based on encoding and decoding is designed in the first part. The second part is composed of a residual module, which is used to extract the characteristics of voltage information and ensure that no information is lost. The anti-noise performance of the network is better than other networks. In physical experiments, it is also proved that the algorithm can roughly restore the location of the object in the field. |
doi_str_mv | 10.1063/5.0167592 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0167592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2885359722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-fdcd8d415175613b9221fb35943280bba00ba159d9f812d35a4ac9ac8eaa3c143</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmALgUQpDPyDSCyAlOKz48Qeq6p8SJVYYLYc26nSpnGxHRD_Hpd0YuCWd3l0p_cQugY8A1zSBzbDUFZMkBM0AcxFXpWEnqIJxrTIy6rg5-gihA1OwwAmaDnPtApaGWsy7fpP1w2xdb3qst4O_jfil_PbkDXOZyF6t7WZsdHqA8vanVq3_foSnTWqC_bqmFP0_rh8Wzznq9enl8V8lWtKcMwbow03BTCoWAm0FoRAU1MmCko4rmuFca2ACSMaDsRQpgqlhdLcKkU1FHSKbse9e-8-Bhui3LVB265TvXVDkIRzxqigFU_05g_duMGnYqNKRytCkroblfYuBG8bufepk_-WgOXhoZLJ40OTvR9t0G1Uh_r_4B9fT3Rr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885359722</pqid></control><display><type>article</type><title>A cascaded convolutional neural networks for stroke detection imaging</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Liu, Jinzhen ; He, Xiaochuan ; Xiong, Hui</creator><creatorcontrib>Liu, Jinzhen ; He, Xiaochuan ; Xiong, Hui</creatorcontrib><description>In recent years, electrical impedance tomography has widely been used in stroke detection. To improve the prediction accuracy and anti-noise ability of the system, the inverse problem of electrical impedance tomography needs to be solved, for which cascade convolutional neural networks are used. The proposed network is divided into two parts so that the advantages can be compounded when parts of a network are cascaded together. To get high-resolution imaging, an optimized network based on encoding and decoding is designed in the first part. The second part is composed of a residual module, which is used to extract the characteristics of voltage information and ensure that no information is lost. The anti-noise performance of the network is better than other networks. In physical experiments, it is also proved that the algorithm can roughly restore the location of the object in the field.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/5.0167592</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Artificial neural networks ; Electrical impedance ; Image resolution ; Inverse problems ; Noise prediction ; Scientific apparatus & instruments ; Tomography</subject><ispartof>Review of scientific instruments, 2023-11, Vol.94 (11)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c320t-fdcd8d415175613b9221fb35943280bba00ba159d9f812d35a4ac9ac8eaa3c143</cites><orcidid>0000-0003-0496-2859 ; 0009-0004-6188-7677 ; 0000-0001-8940-5626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/5.0167592$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Liu, Jinzhen</creatorcontrib><creatorcontrib>He, Xiaochuan</creatorcontrib><creatorcontrib>Xiong, Hui</creatorcontrib><title>A cascaded convolutional neural networks for stroke detection imaging</title><title>Review of scientific instruments</title><description>In recent years, electrical impedance tomography has widely been used in stroke detection. To improve the prediction accuracy and anti-noise ability of the system, the inverse problem of electrical impedance tomography needs to be solved, for which cascade convolutional neural networks are used. The proposed network is divided into two parts so that the advantages can be compounded when parts of a network are cascaded together. To get high-resolution imaging, an optimized network based on encoding and decoding is designed in the first part. The second part is composed of a residual module, which is used to extract the characteristics of voltage information and ensure that no information is lost. The anti-noise performance of the network is better than other networks. In physical experiments, it is also proved that the algorithm can roughly restore the location of the object in the field.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Electrical impedance</subject><subject>Image resolution</subject><subject>Inverse problems</subject><subject>Noise prediction</subject><subject>Scientific apparatus & instruments</subject><subject>Tomography</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90D1PwzAQBmALgUQpDPyDSCyAlOKz48Qeq6p8SJVYYLYc26nSpnGxHRD_Hpd0YuCWd3l0p_cQugY8A1zSBzbDUFZMkBM0AcxFXpWEnqIJxrTIy6rg5-gihA1OwwAmaDnPtApaGWsy7fpP1w2xdb3qst4O_jfil_PbkDXOZyF6t7WZsdHqA8vanVq3_foSnTWqC_bqmFP0_rh8Wzznq9enl8V8lWtKcMwbow03BTCoWAm0FoRAU1MmCko4rmuFca2ACSMaDsRQpgqlhdLcKkU1FHSKbse9e-8-Bhui3LVB265TvXVDkIRzxqigFU_05g_duMGnYqNKRytCkroblfYuBG8bufepk_-WgOXhoZLJ40OTvR9t0G1Uh_r_4B9fT3Rr</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Liu, Jinzhen</creator><creator>He, Xiaochuan</creator><creator>Xiong, Hui</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0496-2859</orcidid><orcidid>https://orcid.org/0009-0004-6188-7677</orcidid><orcidid>https://orcid.org/0000-0001-8940-5626</orcidid></search><sort><creationdate>20231101</creationdate><title>A cascaded convolutional neural networks for stroke detection imaging</title><author>Liu, Jinzhen ; He, Xiaochuan ; Xiong, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-fdcd8d415175613b9221fb35943280bba00ba159d9f812d35a4ac9ac8eaa3c143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Electrical impedance</topic><topic>Image resolution</topic><topic>Inverse problems</topic><topic>Noise prediction</topic><topic>Scientific apparatus & instruments</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jinzhen</creatorcontrib><creatorcontrib>He, Xiaochuan</creatorcontrib><creatorcontrib>Xiong, Hui</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jinzhen</au><au>He, Xiaochuan</au><au>Xiong, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A cascaded convolutional neural networks for stroke detection imaging</atitle><jtitle>Review of scientific instruments</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>94</volume><issue>11</issue><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>In recent years, electrical impedance tomography has widely been used in stroke detection. To improve the prediction accuracy and anti-noise ability of the system, the inverse problem of electrical impedance tomography needs to be solved, for which cascade convolutional neural networks are used. The proposed network is divided into two parts so that the advantages can be compounded when parts of a network are cascaded together. To get high-resolution imaging, an optimized network based on encoding and decoding is designed in the first part. The second part is composed of a residual module, which is used to extract the characteristics of voltage information and ensure that no information is lost. The anti-noise performance of the network is better than other networks. In physical experiments, it is also proved that the algorithm can roughly restore the location of the object in the field.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0167592</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0496-2859</orcidid><orcidid>https://orcid.org/0009-0004-6188-7677</orcidid><orcidid>https://orcid.org/0000-0001-8940-5626</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2023-11, Vol.94 (11) |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0167592 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Algorithms Artificial neural networks Electrical impedance Image resolution Inverse problems Noise prediction Scientific apparatus & instruments Tomography |
title | A cascaded convolutional neural networks for stroke detection imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T12%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20cascaded%20convolutional%20neural%20networks%20for%20stroke%20detection%20imaging&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Liu,%20Jinzhen&rft.date=2023-11-01&rft.volume=94&rft.issue=11&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/5.0167592&rft_dat=%3Cproquest_scita%3E2885359722%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885359722&rft_id=info:pmid/&rfr_iscdi=true |