A cascaded convolutional neural networks for stroke detection imaging

In recent years, electrical impedance tomography has widely been used in stroke detection. To improve the prediction accuracy and anti-noise ability of the system, the inverse problem of electrical impedance tomography needs to be solved, for which cascade convolutional neural networks are used. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2023-11, Vol.94 (11)
Hauptverfasser: Liu, Jinzhen, He, Xiaochuan, Xiong, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Review of scientific instruments
container_volume 94
creator Liu, Jinzhen
He, Xiaochuan
Xiong, Hui
description In recent years, electrical impedance tomography has widely been used in stroke detection. To improve the prediction accuracy and anti-noise ability of the system, the inverse problem of electrical impedance tomography needs to be solved, for which cascade convolutional neural networks are used. The proposed network is divided into two parts so that the advantages can be compounded when parts of a network are cascaded together. To get high-resolution imaging, an optimized network based on encoding and decoding is designed in the first part. The second part is composed of a residual module, which is used to extract the characteristics of voltage information and ensure that no information is lost. The anti-noise performance of the network is better than other networks. In physical experiments, it is also proved that the algorithm can roughly restore the location of the object in the field.
doi_str_mv 10.1063/5.0167592
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0167592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2885359722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-fdcd8d415175613b9221fb35943280bba00ba159d9f812d35a4ac9ac8eaa3c143</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmALgUQpDPyDSCyAlOKz48Qeq6p8SJVYYLYc26nSpnGxHRD_Hpd0YuCWd3l0p_cQugY8A1zSBzbDUFZMkBM0AcxFXpWEnqIJxrTIy6rg5-gihA1OwwAmaDnPtApaGWsy7fpP1w2xdb3qst4O_jfil_PbkDXOZyF6t7WZsdHqA8vanVq3_foSnTWqC_bqmFP0_rh8Wzznq9enl8V8lWtKcMwbow03BTCoWAm0FoRAU1MmCko4rmuFca2ACSMaDsRQpgqlhdLcKkU1FHSKbse9e-8-Bhui3LVB265TvXVDkIRzxqigFU_05g_duMGnYqNKRytCkroblfYuBG8bufepk_-WgOXhoZLJ40OTvR9t0G1Uh_r_4B9fT3Rr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885359722</pqid></control><display><type>article</type><title>A cascaded convolutional neural networks for stroke detection imaging</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Liu, Jinzhen ; He, Xiaochuan ; Xiong, Hui</creator><creatorcontrib>Liu, Jinzhen ; He, Xiaochuan ; Xiong, Hui</creatorcontrib><description>In recent years, electrical impedance tomography has widely been used in stroke detection. To improve the prediction accuracy and anti-noise ability of the system, the inverse problem of electrical impedance tomography needs to be solved, for which cascade convolutional neural networks are used. The proposed network is divided into two parts so that the advantages can be compounded when parts of a network are cascaded together. To get high-resolution imaging, an optimized network based on encoding and decoding is designed in the first part. The second part is composed of a residual module, which is used to extract the characteristics of voltage information and ensure that no information is lost. The anti-noise performance of the network is better than other networks. In physical experiments, it is also proved that the algorithm can roughly restore the location of the object in the field.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/5.0167592</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Artificial neural networks ; Electrical impedance ; Image resolution ; Inverse problems ; Noise prediction ; Scientific apparatus &amp; instruments ; Tomography</subject><ispartof>Review of scientific instruments, 2023-11, Vol.94 (11)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c320t-fdcd8d415175613b9221fb35943280bba00ba159d9f812d35a4ac9ac8eaa3c143</cites><orcidid>0000-0003-0496-2859 ; 0009-0004-6188-7677 ; 0000-0001-8940-5626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/5.0167592$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Liu, Jinzhen</creatorcontrib><creatorcontrib>He, Xiaochuan</creatorcontrib><creatorcontrib>Xiong, Hui</creatorcontrib><title>A cascaded convolutional neural networks for stroke detection imaging</title><title>Review of scientific instruments</title><description>In recent years, electrical impedance tomography has widely been used in stroke detection. To improve the prediction accuracy and anti-noise ability of the system, the inverse problem of electrical impedance tomography needs to be solved, for which cascade convolutional neural networks are used. The proposed network is divided into two parts so that the advantages can be compounded when parts of a network are cascaded together. To get high-resolution imaging, an optimized network based on encoding and decoding is designed in the first part. The second part is composed of a residual module, which is used to extract the characteristics of voltage information and ensure that no information is lost. The anti-noise performance of the network is better than other networks. In physical experiments, it is also proved that the algorithm can roughly restore the location of the object in the field.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Electrical impedance</subject><subject>Image resolution</subject><subject>Inverse problems</subject><subject>Noise prediction</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Tomography</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90D1PwzAQBmALgUQpDPyDSCyAlOKz48Qeq6p8SJVYYLYc26nSpnGxHRD_Hpd0YuCWd3l0p_cQugY8A1zSBzbDUFZMkBM0AcxFXpWEnqIJxrTIy6rg5-gihA1OwwAmaDnPtApaGWsy7fpP1w2xdb3qst4O_jfil_PbkDXOZyF6t7WZsdHqA8vanVq3_foSnTWqC_bqmFP0_rh8Wzznq9enl8V8lWtKcMwbow03BTCoWAm0FoRAU1MmCko4rmuFca2ACSMaDsRQpgqlhdLcKkU1FHSKbse9e-8-Bhui3LVB265TvXVDkIRzxqigFU_05g_duMGnYqNKRytCkroblfYuBG8bufepk_-WgOXhoZLJ40OTvR9t0G1Uh_r_4B9fT3Rr</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Liu, Jinzhen</creator><creator>He, Xiaochuan</creator><creator>Xiong, Hui</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0496-2859</orcidid><orcidid>https://orcid.org/0009-0004-6188-7677</orcidid><orcidid>https://orcid.org/0000-0001-8940-5626</orcidid></search><sort><creationdate>20231101</creationdate><title>A cascaded convolutional neural networks for stroke detection imaging</title><author>Liu, Jinzhen ; He, Xiaochuan ; Xiong, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-fdcd8d415175613b9221fb35943280bba00ba159d9f812d35a4ac9ac8eaa3c143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Electrical impedance</topic><topic>Image resolution</topic><topic>Inverse problems</topic><topic>Noise prediction</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jinzhen</creatorcontrib><creatorcontrib>He, Xiaochuan</creatorcontrib><creatorcontrib>Xiong, Hui</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jinzhen</au><au>He, Xiaochuan</au><au>Xiong, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A cascaded convolutional neural networks for stroke detection imaging</atitle><jtitle>Review of scientific instruments</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>94</volume><issue>11</issue><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>In recent years, electrical impedance tomography has widely been used in stroke detection. To improve the prediction accuracy and anti-noise ability of the system, the inverse problem of electrical impedance tomography needs to be solved, for which cascade convolutional neural networks are used. The proposed network is divided into two parts so that the advantages can be compounded when parts of a network are cascaded together. To get high-resolution imaging, an optimized network based on encoding and decoding is designed in the first part. The second part is composed of a residual module, which is used to extract the characteristics of voltage information and ensure that no information is lost. The anti-noise performance of the network is better than other networks. In physical experiments, it is also proved that the algorithm can roughly restore the location of the object in the field.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0167592</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0496-2859</orcidid><orcidid>https://orcid.org/0009-0004-6188-7677</orcidid><orcidid>https://orcid.org/0000-0001-8940-5626</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2023-11, Vol.94 (11)
issn 0034-6748
1089-7623
language eng
recordid cdi_scitation_primary_10_1063_5_0167592
source AIP Journals Complete; Alma/SFX Local Collection
subjects Algorithms
Artificial neural networks
Electrical impedance
Image resolution
Inverse problems
Noise prediction
Scientific apparatus & instruments
Tomography
title A cascaded convolutional neural networks for stroke detection imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T12%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20cascaded%20convolutional%20neural%20networks%20for%20stroke%20detection%20imaging&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Liu,%20Jinzhen&rft.date=2023-11-01&rft.volume=94&rft.issue=11&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/5.0167592&rft_dat=%3Cproquest_scita%3E2885359722%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885359722&rft_id=info:pmid/&rfr_iscdi=true