Investigating airborne transmission risks: A mathematical model of evaporating droplets with solid residue

The COVID-19 pandemic has spotlit the scientific field of fluid dynamics governing airborne transmission through virus-laden mucosal-salivary droplets. In this work, a mathematical model for airborne droplet dispersion and viral transmission centered on evaporating droplets containing solid residue...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2023-09, Vol.35 (9)
1. Verfasser: Klaseboer, Evert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Physics of fluids (1994)
container_volume 35
creator Klaseboer, Evert
description The COVID-19 pandemic has spotlit the scientific field of fluid dynamics governing airborne transmission through virus-laden mucosal-salivary droplets. In this work, a mathematical model for airborne droplet dispersion and viral transmission centered on evaporating droplets containing solid residue was proposed. Droplet dynamics are influenced by factors such as initial velocity, relative humidity (RH), and solid residue, in agreement with analytical and experimental results. Interestingly, the maximum droplet dispersion distance depends strongly on initial droplet size and RH, such as 0.8-mm-diameter droplet at 0.3 RH, 1.0 mm at 0.6 RH, and 1.75 mm at 0.9 RH, but only weakly on initial projected velocity. Under realistic conditions, an evaporating sputum droplet can cover a dispersion distance at least three times than that of a pure water droplet. Based on Wells falling curves, the critical droplet size, the largest droplet that can remain suspended in air without settling due to gravity, ranges from 120 μm at 0.3 RH to 75 μm at 0.9 RH. Together, our results highlight the role of evaporation on droplet lifetime, dispersion distance, and transmission risks.
doi_str_mv 10.1063/5.0167175
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0167175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866155300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-30b14fe7030a1d45277bbadae5e063fda1ec6e0b9d4a1c866d9dd2643f529f4a3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqUw8A8sMYGUYsex07BVFR-VKrHAHDnxpXVJ4uBzi_j3uEpnlrsbHr2n5yXklrMZZ0o8yhnjKue5PCMTzuZFkiulzo93zhKlBL8kV4g7xpgoUjUhu1V_AAx2o4PtN1RbXznfAw1e99hZROt66i1-4RNd0E6HLcRha93SzhloqWsoHPTg_BhgvBtaCEh_bNhSdK011ANas4drctHoFuHmtKfk8-X5Y_mWrN9fV8vFOqnTIg2JYBXPGsiZYJqbTKZ5XlXaaJAQBRujOdQKWFWYTPN6rpQpjElVJhqZFk2mxZTcjbmDd9_7KFfu3N738WWZRpxLKaL9lNyPVO0dooemHLzttP8tOSuPVZayPFUZ2YeRxdqG6On6f-A_YbR1hw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866155300</pqid></control><display><type>article</type><title>Investigating airborne transmission risks: A mathematical model of evaporating droplets with solid residue</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Klaseboer, Evert</creator><creatorcontrib>Klaseboer, Evert</creatorcontrib><description>The COVID-19 pandemic has spotlit the scientific field of fluid dynamics governing airborne transmission through virus-laden mucosal-salivary droplets. In this work, a mathematical model for airborne droplet dispersion and viral transmission centered on evaporating droplets containing solid residue was proposed. Droplet dynamics are influenced by factors such as initial velocity, relative humidity (RH), and solid residue, in agreement with analytical and experimental results. Interestingly, the maximum droplet dispersion distance depends strongly on initial droplet size and RH, such as 0.8-mm-diameter droplet at 0.3 RH, 1.0 mm at 0.6 RH, and 1.75 mm at 0.9 RH, but only weakly on initial projected velocity. Under realistic conditions, an evaporating sputum droplet can cover a dispersion distance at least three times than that of a pure water droplet. Based on Wells falling curves, the critical droplet size, the largest droplet that can remain suspended in air without settling due to gravity, ranges from 120 μm at 0.3 RH to 75 μm at 0.9 RH. Together, our results highlight the role of evaporation on droplet lifetime, dispersion distance, and transmission risks.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0167175</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Dispersion ; Droplets ; Evaporation ; Fluid dynamics ; Mathematical analysis ; Mathematical models ; Relative humidity ; Residues ; Water drops</subject><ispartof>Physics of fluids (1994), 2023-09, Vol.35 (9)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-30b14fe7030a1d45277bbadae5e063fda1ec6e0b9d4a1c866d9dd2643f529f4a3</citedby><cites>FETCH-LOGICAL-c292t-30b14fe7030a1d45277bbadae5e063fda1ec6e0b9d4a1c866d9dd2643f529f4a3</cites><orcidid>0000-0003-4813-4529 ; 0000-0003-0906-9576 ; 0000-0002-9737-488X ; 0000-0003-3237-9599 ; 0000-0002-0682-0603 ; 0000-0002-0963-0813 ; 0000-0003-4736-295X ; 0000-0002-0064-0118 ; 0000-0002-4299-5718 ; 0000-0002-6672-2415</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Klaseboer, Evert</creatorcontrib><title>Investigating airborne transmission risks: A mathematical model of evaporating droplets with solid residue</title><title>Physics of fluids (1994)</title><description>The COVID-19 pandemic has spotlit the scientific field of fluid dynamics governing airborne transmission through virus-laden mucosal-salivary droplets. In this work, a mathematical model for airborne droplet dispersion and viral transmission centered on evaporating droplets containing solid residue was proposed. Droplet dynamics are influenced by factors such as initial velocity, relative humidity (RH), and solid residue, in agreement with analytical and experimental results. Interestingly, the maximum droplet dispersion distance depends strongly on initial droplet size and RH, such as 0.8-mm-diameter droplet at 0.3 RH, 1.0 mm at 0.6 RH, and 1.75 mm at 0.9 RH, but only weakly on initial projected velocity. Under realistic conditions, an evaporating sputum droplet can cover a dispersion distance at least three times than that of a pure water droplet. Based on Wells falling curves, the critical droplet size, the largest droplet that can remain suspended in air without settling due to gravity, ranges from 120 μm at 0.3 RH to 75 μm at 0.9 RH. Together, our results highlight the role of evaporation on droplet lifetime, dispersion distance, and transmission risks.</description><subject>Dispersion</subject><subject>Droplets</subject><subject>Evaporation</subject><subject>Fluid dynamics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Relative humidity</subject><subject>Residues</subject><subject>Water drops</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqUw8A8sMYGUYsex07BVFR-VKrHAHDnxpXVJ4uBzi_j3uEpnlrsbHr2n5yXklrMZZ0o8yhnjKue5PCMTzuZFkiulzo93zhKlBL8kV4g7xpgoUjUhu1V_AAx2o4PtN1RbXznfAw1e99hZROt66i1-4RNd0E6HLcRha93SzhloqWsoHPTg_BhgvBtaCEh_bNhSdK011ANas4drctHoFuHmtKfk8-X5Y_mWrN9fV8vFOqnTIg2JYBXPGsiZYJqbTKZ5XlXaaJAQBRujOdQKWFWYTPN6rpQpjElVJhqZFk2mxZTcjbmDd9_7KFfu3N738WWZRpxLKaL9lNyPVO0dooemHLzttP8tOSuPVZayPFUZ2YeRxdqG6On6f-A_YbR1hw</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Klaseboer, Evert</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4813-4529</orcidid><orcidid>https://orcid.org/0000-0003-0906-9576</orcidid><orcidid>https://orcid.org/0000-0002-9737-488X</orcidid><orcidid>https://orcid.org/0000-0003-3237-9599</orcidid><orcidid>https://orcid.org/0000-0002-0682-0603</orcidid><orcidid>https://orcid.org/0000-0002-0963-0813</orcidid><orcidid>https://orcid.org/0000-0003-4736-295X</orcidid><orcidid>https://orcid.org/0000-0002-0064-0118</orcidid><orcidid>https://orcid.org/0000-0002-4299-5718</orcidid><orcidid>https://orcid.org/0000-0002-6672-2415</orcidid></search><sort><creationdate>202309</creationdate><title>Investigating airborne transmission risks: A mathematical model of evaporating droplets with solid residue</title><author>Klaseboer, Evert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-30b14fe7030a1d45277bbadae5e063fda1ec6e0b9d4a1c866d9dd2643f529f4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Dispersion</topic><topic>Droplets</topic><topic>Evaporation</topic><topic>Fluid dynamics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Relative humidity</topic><topic>Residues</topic><topic>Water drops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klaseboer, Evert</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klaseboer, Evert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating airborne transmission risks: A mathematical model of evaporating droplets with solid residue</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2023-09</date><risdate>2023</risdate><volume>35</volume><issue>9</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The COVID-19 pandemic has spotlit the scientific field of fluid dynamics governing airborne transmission through virus-laden mucosal-salivary droplets. In this work, a mathematical model for airborne droplet dispersion and viral transmission centered on evaporating droplets containing solid residue was proposed. Droplet dynamics are influenced by factors such as initial velocity, relative humidity (RH), and solid residue, in agreement with analytical and experimental results. Interestingly, the maximum droplet dispersion distance depends strongly on initial droplet size and RH, such as 0.8-mm-diameter droplet at 0.3 RH, 1.0 mm at 0.6 RH, and 1.75 mm at 0.9 RH, but only weakly on initial projected velocity. Under realistic conditions, an evaporating sputum droplet can cover a dispersion distance at least three times than that of a pure water droplet. Based on Wells falling curves, the critical droplet size, the largest droplet that can remain suspended in air without settling due to gravity, ranges from 120 μm at 0.3 RH to 75 μm at 0.9 RH. Together, our results highlight the role of evaporation on droplet lifetime, dispersion distance, and transmission risks.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0167175</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4813-4529</orcidid><orcidid>https://orcid.org/0000-0003-0906-9576</orcidid><orcidid>https://orcid.org/0000-0002-9737-488X</orcidid><orcidid>https://orcid.org/0000-0003-3237-9599</orcidid><orcidid>https://orcid.org/0000-0002-0682-0603</orcidid><orcidid>https://orcid.org/0000-0002-0963-0813</orcidid><orcidid>https://orcid.org/0000-0003-4736-295X</orcidid><orcidid>https://orcid.org/0000-0002-0064-0118</orcidid><orcidid>https://orcid.org/0000-0002-4299-5718</orcidid><orcidid>https://orcid.org/0000-0002-6672-2415</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2023-09, Vol.35 (9)
issn 1070-6631
1089-7666
language eng
recordid cdi_scitation_primary_10_1063_5_0167175
source AIP Journals Complete; Alma/SFX Local Collection
subjects Dispersion
Droplets
Evaporation
Fluid dynamics
Mathematical analysis
Mathematical models
Relative humidity
Residues
Water drops
title Investigating airborne transmission risks: A mathematical model of evaporating droplets with solid residue
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A50%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20airborne%20transmission%20risks:%20A%20mathematical%20model%20of%20evaporating%20droplets%20with%20solid%20residue&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Klaseboer,%20Evert&rft.date=2023-09&rft.volume=35&rft.issue=9&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0167175&rft_dat=%3Cproquest_scita%3E2866155300%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866155300&rft_id=info:pmid/&rfr_iscdi=true