Instabilities of a dam-break wave of power-law fluids
The paper theoretically investigates the stability properties of the dam-break wave of a fluid with power-law rheology. Assuming the long-wave approximation, a depth-averaged flow model is considered. The linear stability analysis of the wave is carried out to individuate the marginal stability cond...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2023-10, Vol.35 (10) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 35 |
creator | Di Cristo, C. Iervolino, M. Vacca, A. |
description | The paper theoretically investigates the stability properties of the dam-break wave of a fluid with power-law rheology. Assuming the long-wave approximation, a depth-averaged flow model is considered. The linear stability analysis of the wave is carried out to individuate the marginal stability conditions. To this aim, the multiple-scale technique is applied with reference to the kinematic wave solution, which formally limits the validity of the theoretical achievements to relatively long time scales. Both shear-thinning and shear-thickening fluids are considered. Similarly to the case with uniform conditions, the analysis indicates that stable conditions can be associated with a marginal value of the Froude number. However, differently from the uniform conditions, the marginal Froude number is shown to be a function not only of the power-law index but also of the streamwise gradient of the base flow velocity and of the disturbance wavelength. The critical Froude number is found to be larger than the corresponding one in uniform conditions. Numerical solutions of the full model confirmed the outcomes of the linear stability analysis for both shear-thinning and shear-thickening fluids. |
doi_str_mv | 10.1063/5.0163825 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0163825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2871424756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-d58e3370f437385832495c121d2d3c1e84b12ee8a96f8be7447aabe60685b3e83</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgCq6rB_9BwZNC1iSTrx5l8WNhwYueQ9pOIWt3uyatxX9vS_fsaYbh4R14CbnlbMWZhke1YlyDFeqMLDizOTVa6_NpN4xqDfySXKW0Y4xBLvSCqM0hdb4ITegCpqytM59Vfk-LiP4rG_wPTrdjO2CkjR-yuulDla7JRe2bhDenuSSfL88f6ze6fX_drJ-2tARhOlopiwCG1RIMWGVByFyVXPBKVFBytLLgAtH6XNe2QCOl8b5AzbRVBaCFJbmbc4-x_e4xdW7X9vEwvnTCGi6FNEqP6n5WZWxTili7Ywx7H38dZ25qxSl3amW0D7NNZeh8F9rDP_gPpdVfAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2871424756</pqid></control><display><type>article</type><title>Instabilities of a dam-break wave of power-law fluids</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Di Cristo, C. ; Iervolino, M. ; Vacca, A.</creator><creatorcontrib>Di Cristo, C. ; Iervolino, M. ; Vacca, A.</creatorcontrib><description>The paper theoretically investigates the stability properties of the dam-break wave of a fluid with power-law rheology. Assuming the long-wave approximation, a depth-averaged flow model is considered. The linear stability analysis of the wave is carried out to individuate the marginal stability conditions. To this aim, the multiple-scale technique is applied with reference to the kinematic wave solution, which formally limits the validity of the theoretical achievements to relatively long time scales. Both shear-thinning and shear-thickening fluids are considered. Similarly to the case with uniform conditions, the analysis indicates that stable conditions can be associated with a marginal value of the Froude number. However, differently from the uniform conditions, the marginal Froude number is shown to be a function not only of the power-law index but also of the streamwise gradient of the base flow velocity and of the disturbance wavelength. The critical Froude number is found to be larger than the corresponding one in uniform conditions. Numerical solutions of the full model confirmed the outcomes of the linear stability analysis for both shear-thinning and shear-thickening fluids.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0163825</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Base flow ; Dam stability ; Flow stability ; Flow velocity ; Fluid dynamics ; Froude number ; Kinematics ; Physics ; Power law ; Rheological properties ; Rheology ; Shear ; Shear thickening (liquids) ; Shear thinning (liquids) ; Stability analysis</subject><ispartof>Physics of fluids (1994), 2023-10, Vol.35 (10)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-d58e3370f437385832495c121d2d3c1e84b12ee8a96f8be7447aabe60685b3e83</citedby><cites>FETCH-LOGICAL-c327t-d58e3370f437385832495c121d2d3c1e84b12ee8a96f8be7447aabe60685b3e83</cites><orcidid>0000-0001-8344-8334 ; 0000-0001-6578-4502 ; 0000-0002-7170-2005</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4511,27923,27924</link.rule.ids></links><search><creatorcontrib>Di Cristo, C.</creatorcontrib><creatorcontrib>Iervolino, M.</creatorcontrib><creatorcontrib>Vacca, A.</creatorcontrib><title>Instabilities of a dam-break wave of power-law fluids</title><title>Physics of fluids (1994)</title><description>The paper theoretically investigates the stability properties of the dam-break wave of a fluid with power-law rheology. Assuming the long-wave approximation, a depth-averaged flow model is considered. The linear stability analysis of the wave is carried out to individuate the marginal stability conditions. To this aim, the multiple-scale technique is applied with reference to the kinematic wave solution, which formally limits the validity of the theoretical achievements to relatively long time scales. Both shear-thinning and shear-thickening fluids are considered. Similarly to the case with uniform conditions, the analysis indicates that stable conditions can be associated with a marginal value of the Froude number. However, differently from the uniform conditions, the marginal Froude number is shown to be a function not only of the power-law index but also of the streamwise gradient of the base flow velocity and of the disturbance wavelength. The critical Froude number is found to be larger than the corresponding one in uniform conditions. Numerical solutions of the full model confirmed the outcomes of the linear stability analysis for both shear-thinning and shear-thickening fluids.</description><subject>Base flow</subject><subject>Dam stability</subject><subject>Flow stability</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Froude number</subject><subject>Kinematics</subject><subject>Physics</subject><subject>Power law</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Shear</subject><subject>Shear thickening (liquids)</subject><subject>Shear thinning (liquids)</subject><subject>Stability analysis</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgCq6rB_9BwZNC1iSTrx5l8WNhwYueQ9pOIWt3uyatxX9vS_fsaYbh4R14CbnlbMWZhke1YlyDFeqMLDizOTVa6_NpN4xqDfySXKW0Y4xBLvSCqM0hdb4ITegCpqytM59Vfk-LiP4rG_wPTrdjO2CkjR-yuulDla7JRe2bhDenuSSfL88f6ze6fX_drJ-2tARhOlopiwCG1RIMWGVByFyVXPBKVFBytLLgAtH6XNe2QCOl8b5AzbRVBaCFJbmbc4-x_e4xdW7X9vEwvnTCGi6FNEqP6n5WZWxTili7Ywx7H38dZ25qxSl3amW0D7NNZeh8F9rDP_gPpdVfAQ</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Di Cristo, C.</creator><creator>Iervolino, M.</creator><creator>Vacca, A.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8344-8334</orcidid><orcidid>https://orcid.org/0000-0001-6578-4502</orcidid><orcidid>https://orcid.org/0000-0002-7170-2005</orcidid></search><sort><creationdate>202310</creationdate><title>Instabilities of a dam-break wave of power-law fluids</title><author>Di Cristo, C. ; Iervolino, M. ; Vacca, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-d58e3370f437385832495c121d2d3c1e84b12ee8a96f8be7447aabe60685b3e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Base flow</topic><topic>Dam stability</topic><topic>Flow stability</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Froude number</topic><topic>Kinematics</topic><topic>Physics</topic><topic>Power law</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Shear</topic><topic>Shear thickening (liquids)</topic><topic>Shear thinning (liquids)</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Cristo, C.</creatorcontrib><creatorcontrib>Iervolino, M.</creatorcontrib><creatorcontrib>Vacca, A.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Cristo, C.</au><au>Iervolino, M.</au><au>Vacca, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instabilities of a dam-break wave of power-law fluids</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2023-10</date><risdate>2023</risdate><volume>35</volume><issue>10</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>The paper theoretically investigates the stability properties of the dam-break wave of a fluid with power-law rheology. Assuming the long-wave approximation, a depth-averaged flow model is considered. The linear stability analysis of the wave is carried out to individuate the marginal stability conditions. To this aim, the multiple-scale technique is applied with reference to the kinematic wave solution, which formally limits the validity of the theoretical achievements to relatively long time scales. Both shear-thinning and shear-thickening fluids are considered. Similarly to the case with uniform conditions, the analysis indicates that stable conditions can be associated with a marginal value of the Froude number. However, differently from the uniform conditions, the marginal Froude number is shown to be a function not only of the power-law index but also of the streamwise gradient of the base flow velocity and of the disturbance wavelength. The critical Froude number is found to be larger than the corresponding one in uniform conditions. Numerical solutions of the full model confirmed the outcomes of the linear stability analysis for both shear-thinning and shear-thickening fluids.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0163825</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8344-8334</orcidid><orcidid>https://orcid.org/0000-0001-6578-4502</orcidid><orcidid>https://orcid.org/0000-0002-7170-2005</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2023-10, Vol.35 (10) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0163825 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Base flow Dam stability Flow stability Flow velocity Fluid dynamics Froude number Kinematics Physics Power law Rheological properties Rheology Shear Shear thickening (liquids) Shear thinning (liquids) Stability analysis |
title | Instabilities of a dam-break wave of power-law fluids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A53%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instabilities%20of%20a%20dam-break%20wave%20of%20power-law%20fluids&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Di%20Cristo,%20C.&rft.date=2023-10&rft.volume=35&rft.issue=10&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0163825&rft_dat=%3Cproquest_scita%3E2871424756%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2871424756&rft_id=info:pmid/&rfr_iscdi=true |