Phase space perspective on a model for isomerization in an optical cavity

Explanation for the modification of rates and mechanism of reactions carried out in optical cavities still eludes us. Several studies indicate that the cavity-mediated changes in the nature of vibrational energy flow within a molecule may play a significant role. Here, we study a model polaritonic s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2023-08, Vol.159 (7)
Hauptverfasser: Mondal, Subhadip, Keshavamurthy, Srihari
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title The Journal of chemical physics
container_volume 159
creator Mondal, Subhadip
Keshavamurthy, Srihari
description Explanation for the modification of rates and mechanism of reactions carried out in optical cavities still eludes us. Several studies indicate that the cavity-mediated changes in the nature of vibrational energy flow within a molecule may play a significant role. Here, we study a model polaritonic system, proposed and analyzed earlier by Fischer et al., J. Chem. Phys. 156, 154305 (2022), comprising a one-dimensional isomerization mode coupled to a single photon mode in a lossless cavity. We show that the isomerization probability in the presence of virtual photons, for specific cavity–system coupling strengths and cavity frequencies, can exhibit suppression or enhancement for different choices of the initial reactant vibropolariton wavepacket. We observe a qualitative agreement between the classical and quantum average isomerization probabilities in the virtual photon case. A significant part of the effects due to coupling to the cavity can be rationalized in terms of a “chaos–order–chaos” transition of the classical phase space and the phase space localization nature of the polariton states that dominantly participate in the quantum isomerization dynamics. On the other hand, for initial states with zero photons (i.e., a “dark cavity”), the isomerization probability is suppressed when the cavity frequency is tuned near to the fundamental frequency of the reactive mode. The classical–quantum correspondence in the zero photon case is unsatisfactory. In this simple model, we find that the suppression or enhancement of isomerization arises due to the interplay between cavity–system energy flow dynamics and quantum tunneling.
doi_str_mv 10.1063/5.0160586
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0160586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2852813628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-2ce2d6cd89b6f60dfd4bcc4a8e17fef9bf2335be430400629b7a0e3ade2828e03</originalsourceid><addsrcrecordid>eNp90MFLwzAUBvAgCs7pwf8g4EWFzpekTdOjjKmDgR70XNL0BTPapibdYP71dm4nD57e4fvx8fgIuWYwYyDFQzYDJiFT8oRMGKgiyWUBp2QCwFlSSJDn5CLGNQCwnKcTsnz71BFp7LVB2mOIPZrBbZH6jmra-hoban2gLvoWg_vWgxsTN4Yd9f3gjG6o0Vs37C7JmdVNxKvjnZKPp8X7_CVZvT4v54-rxAgJQ8IN8lqaWhWVtBJqW6eVMalWyHKLtqgsFyKrMBWQAkheVLkGFLpGrrhCEFNye-jtg__aYBzK1kWDTaM79JtYcpWJIpU5S0d684eu_SZ043d7xRUTkqtR3R2UCT7GgLbsg2t12JUMyv2oZVYeRx3t_cFG44bfLf7BP46udgc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2852813628</pqid></control><display><type>article</type><title>Phase space perspective on a model for isomerization in an optical cavity</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Mondal, Subhadip ; Keshavamurthy, Srihari</creator><creatorcontrib>Mondal, Subhadip ; Keshavamurthy, Srihari</creatorcontrib><description>Explanation for the modification of rates and mechanism of reactions carried out in optical cavities still eludes us. Several studies indicate that the cavity-mediated changes in the nature of vibrational energy flow within a molecule may play a significant role. Here, we study a model polaritonic system, proposed and analyzed earlier by Fischer et al., J. Chem. Phys. 156, 154305 (2022), comprising a one-dimensional isomerization mode coupled to a single photon mode in a lossless cavity. We show that the isomerization probability in the presence of virtual photons, for specific cavity–system coupling strengths and cavity frequencies, can exhibit suppression or enhancement for different choices of the initial reactant vibropolariton wavepacket. We observe a qualitative agreement between the classical and quantum average isomerization probabilities in the virtual photon case. A significant part of the effects due to coupling to the cavity can be rationalized in terms of a “chaos–order–chaos” transition of the classical phase space and the phase space localization nature of the polariton states that dominantly participate in the quantum isomerization dynamics. On the other hand, for initial states with zero photons (i.e., a “dark cavity”), the isomerization probability is suppressed when the cavity frequency is tuned near to the fundamental frequency of the reactive mode. The classical–quantum correspondence in the zero photon case is unsatisfactory. In this simple model, we find that the suppression or enhancement of isomerization arises due to the interplay between cavity–system energy flow dynamics and quantum tunneling.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0160586</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Coupled modes ; Coupling ; Energy flow ; Holes ; Isomerization ; Photons ; Physics ; Polaritons ; Qualitative analysis ; Quantum tunnelling ; Resonant frequencies ; Wave packets</subject><ispartof>The Journal of chemical physics, 2023-08, Vol.159 (7)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-2ce2d6cd89b6f60dfd4bcc4a8e17fef9bf2335be430400629b7a0e3ade2828e03</citedby><cites>FETCH-LOGICAL-c360t-2ce2d6cd89b6f60dfd4bcc4a8e17fef9bf2335be430400629b7a0e3ade2828e03</cites><orcidid>0000-0002-2798-149X ; 0000-0002-4424-6745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0160586$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76256</link.rule.ids></links><search><creatorcontrib>Mondal, Subhadip</creatorcontrib><creatorcontrib>Keshavamurthy, Srihari</creatorcontrib><title>Phase space perspective on a model for isomerization in an optical cavity</title><title>The Journal of chemical physics</title><description>Explanation for the modification of rates and mechanism of reactions carried out in optical cavities still eludes us. Several studies indicate that the cavity-mediated changes in the nature of vibrational energy flow within a molecule may play a significant role. Here, we study a model polaritonic system, proposed and analyzed earlier by Fischer et al., J. Chem. Phys. 156, 154305 (2022), comprising a one-dimensional isomerization mode coupled to a single photon mode in a lossless cavity. We show that the isomerization probability in the presence of virtual photons, for specific cavity–system coupling strengths and cavity frequencies, can exhibit suppression or enhancement for different choices of the initial reactant vibropolariton wavepacket. We observe a qualitative agreement between the classical and quantum average isomerization probabilities in the virtual photon case. A significant part of the effects due to coupling to the cavity can be rationalized in terms of a “chaos–order–chaos” transition of the classical phase space and the phase space localization nature of the polariton states that dominantly participate in the quantum isomerization dynamics. On the other hand, for initial states with zero photons (i.e., a “dark cavity”), the isomerization probability is suppressed when the cavity frequency is tuned near to the fundamental frequency of the reactive mode. The classical–quantum correspondence in the zero photon case is unsatisfactory. In this simple model, we find that the suppression or enhancement of isomerization arises due to the interplay between cavity–system energy flow dynamics and quantum tunneling.</description><subject>Coupled modes</subject><subject>Coupling</subject><subject>Energy flow</subject><subject>Holes</subject><subject>Isomerization</subject><subject>Photons</subject><subject>Physics</subject><subject>Polaritons</subject><subject>Qualitative analysis</subject><subject>Quantum tunnelling</subject><subject>Resonant frequencies</subject><subject>Wave packets</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90MFLwzAUBvAgCs7pwf8g4EWFzpekTdOjjKmDgR70XNL0BTPapibdYP71dm4nD57e4fvx8fgIuWYwYyDFQzYDJiFT8oRMGKgiyWUBp2QCwFlSSJDn5CLGNQCwnKcTsnz71BFp7LVB2mOIPZrBbZH6jmra-hoban2gLvoWg_vWgxsTN4Yd9f3gjG6o0Vs37C7JmdVNxKvjnZKPp8X7_CVZvT4v54-rxAgJQ8IN8lqaWhWVtBJqW6eVMalWyHKLtqgsFyKrMBWQAkheVLkGFLpGrrhCEFNye-jtg__aYBzK1kWDTaM79JtYcpWJIpU5S0d684eu_SZ043d7xRUTkqtR3R2UCT7GgLbsg2t12JUMyv2oZVYeRx3t_cFG44bfLf7BP46udgc</recordid><startdate>20230821</startdate><enddate>20230821</enddate><creator>Mondal, Subhadip</creator><creator>Keshavamurthy, Srihari</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2798-149X</orcidid><orcidid>https://orcid.org/0000-0002-4424-6745</orcidid></search><sort><creationdate>20230821</creationdate><title>Phase space perspective on a model for isomerization in an optical cavity</title><author>Mondal, Subhadip ; Keshavamurthy, Srihari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-2ce2d6cd89b6f60dfd4bcc4a8e17fef9bf2335be430400629b7a0e3ade2828e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Coupled modes</topic><topic>Coupling</topic><topic>Energy flow</topic><topic>Holes</topic><topic>Isomerization</topic><topic>Photons</topic><topic>Physics</topic><topic>Polaritons</topic><topic>Qualitative analysis</topic><topic>Quantum tunnelling</topic><topic>Resonant frequencies</topic><topic>Wave packets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mondal, Subhadip</creatorcontrib><creatorcontrib>Keshavamurthy, Srihari</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mondal, Subhadip</au><au>Keshavamurthy, Srihari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase space perspective on a model for isomerization in an optical cavity</atitle><jtitle>The Journal of chemical physics</jtitle><date>2023-08-21</date><risdate>2023</risdate><volume>159</volume><issue>7</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Explanation for the modification of rates and mechanism of reactions carried out in optical cavities still eludes us. Several studies indicate that the cavity-mediated changes in the nature of vibrational energy flow within a molecule may play a significant role. Here, we study a model polaritonic system, proposed and analyzed earlier by Fischer et al., J. Chem. Phys. 156, 154305 (2022), comprising a one-dimensional isomerization mode coupled to a single photon mode in a lossless cavity. We show that the isomerization probability in the presence of virtual photons, for specific cavity–system coupling strengths and cavity frequencies, can exhibit suppression or enhancement for different choices of the initial reactant vibropolariton wavepacket. We observe a qualitative agreement between the classical and quantum average isomerization probabilities in the virtual photon case. A significant part of the effects due to coupling to the cavity can be rationalized in terms of a “chaos–order–chaos” transition of the classical phase space and the phase space localization nature of the polariton states that dominantly participate in the quantum isomerization dynamics. On the other hand, for initial states with zero photons (i.e., a “dark cavity”), the isomerization probability is suppressed when the cavity frequency is tuned near to the fundamental frequency of the reactive mode. The classical–quantum correspondence in the zero photon case is unsatisfactory. In this simple model, we find that the suppression or enhancement of isomerization arises due to the interplay between cavity–system energy flow dynamics and quantum tunneling.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0160586</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2798-149X</orcidid><orcidid>https://orcid.org/0000-0002-4424-6745</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2023-08, Vol.159 (7)
issn 0021-9606
1089-7690
language eng
recordid cdi_scitation_primary_10_1063_5_0160586
source AIP Journals Complete; Alma/SFX Local Collection
subjects Coupled modes
Coupling
Energy flow
Holes
Isomerization
Photons
Physics
Polaritons
Qualitative analysis
Quantum tunnelling
Resonant frequencies
Wave packets
title Phase space perspective on a model for isomerization in an optical cavity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A16%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20space%20perspective%20on%20a%20model%20for%20isomerization%20in%20an%20optical%20cavity&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Mondal,%20Subhadip&rft.date=2023-08-21&rft.volume=159&rft.issue=7&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0160586&rft_dat=%3Cproquest_scita%3E2852813628%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2852813628&rft_id=info:pmid/&rfr_iscdi=true