Dynamical analysis of a class of SEIR models through delayed strategies

In recent decades, the mathematical modeling of infectious diseases, real-world problems, non-linear dynamical complex systems, etc., has increased significantly. According to World Health Organization, tobacco use is the cause of about 22% of cancer deaths. Another 10% are due to obesity, poor diet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2023-07, Vol.13 (7), p.075115-075115-10
Hauptverfasser: Alfwzan, Wafa F., Baleanu, Dumitru, Raza, Ali, Rafiq, Muhammad, Ahmed, Nauman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 075115-10
container_issue 7
container_start_page 075115
container_title AIP advances
container_volume 13
creator Alfwzan, Wafa F.
Baleanu, Dumitru
Raza, Ali
Rafiq, Muhammad
Ahmed, Nauman
description In recent decades, the mathematical modeling of infectious diseases, real-world problems, non-linear dynamical complex systems, etc., has increased significantly. According to World Health Organization, tobacco use is the cause of about 22% of cancer deaths. Another 10% are due to obesity, poor diet, lack of physical activity, and excessive drinking of alcohol. Approximately 5%–10% of cancers are due to inherited genetic defects. The objective is to investigate the impact of time delays in implementing control measures on the epidemic dynamics. The classification of cell population has four compartments: susceptible cells (x), cancer-infected cells (y), virus-free cells (v), and immune cells (z). Our focus is to find the equilibria of the problem and their stability. The stability of the solutions is of two types: locally asymptotic and globally asymptotic. The Routh–Hurwitz criterion, Volterra-type Lyapunov function, and LaSalle’s invariance principle are used to verify the stability of solutions. The graphical behavior depicts the stable solutions to a real-world problem and supports the stability analysis of the problem. The findings contribute to the understanding of epidemic dynamics and provide valuable information for designing and implementing effective intervention strategies in public health systems.
doi_str_mv 10.1063/5.0159942
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0159942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_aeb64eeb1efe49d28e6e729c787fae7c</doaj_id><sourcerecordid>2836598155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-6b5860756420ca21d4822126ddbfe3523efd2241d4078f8cbf68624197a8c2f63</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxRdRsNQe_AYLnhS2Jtkkmz1KrbVQEPxzDrPZSZuybWqyPey3d-2KeHIuM-_x4w28JLmmZEqJzO_FlFBRlpydJSNGhcpyxuT5n_symcS4Jf3wkhLFR8nisdvDzhloUthD00UXU29TSE0D8XS-zZev6c7X2MS03QR_XG_SXkCHdRrbAC2uHcar5MJCE3Hys8fJx9P8ffacrV4Wy9nDKjN5mbeZrISSpBCSM2KA0ZorxiiTdV1ZzAXL0daM8d4nhbLKVFYq2euyAGWYlfk4WQ65tYetPgS3g9BpD06fDB_WGkLrTIMasJIcsaJokZc1UyixYKUpVGEBC9Nn3QxZh-A_jxhbvfXH0LcQNVO5FKWiQvTU7UCZ4GMMaH-_UqK_a9dC_9Tes3cDG41roXV-_w_8BW8-f-s</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836598155</pqid></control><display><type>article</type><title>Dynamical analysis of a class of SEIR models through delayed strategies</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Alfwzan, Wafa F. ; Baleanu, Dumitru ; Raza, Ali ; Rafiq, Muhammad ; Ahmed, Nauman</creator><creatorcontrib>Alfwzan, Wafa F. ; Baleanu, Dumitru ; Raza, Ali ; Rafiq, Muhammad ; Ahmed, Nauman</creatorcontrib><description>In recent decades, the mathematical modeling of infectious diseases, real-world problems, non-linear dynamical complex systems, etc., has increased significantly. According to World Health Organization, tobacco use is the cause of about 22% of cancer deaths. Another 10% are due to obesity, poor diet, lack of physical activity, and excessive drinking of alcohol. Approximately 5%–10% of cancers are due to inherited genetic defects. The objective is to investigate the impact of time delays in implementing control measures on the epidemic dynamics. The classification of cell population has four compartments: susceptible cells (x), cancer-infected cells (y), virus-free cells (v), and immune cells (z). Our focus is to find the equilibria of the problem and their stability. The stability of the solutions is of two types: locally asymptotic and globally asymptotic. The Routh–Hurwitz criterion, Volterra-type Lyapunov function, and LaSalle’s invariance principle are used to verify the stability of solutions. The graphical behavior depicts the stable solutions to a real-world problem and supports the stability analysis of the problem. The findings contribute to the understanding of epidemic dynamics and provide valuable information for designing and implementing effective intervention strategies in public health systems.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0159942</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Asymptotic properties ; Cancer ; Complex systems ; Disease control ; Epidemics ; Immune system ; Infectious diseases ; Liapunov functions ; Public health ; Routh-Hurwitz criterion ; Stability analysis ; System effectiveness ; Tobacco</subject><ispartof>AIP advances, 2023-07, Vol.13 (7), p.075115-075115-10</ispartof><rights>Author(s)</rights><rights>2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-6b5860756420ca21d4822126ddbfe3523efd2241d4078f8cbf68624197a8c2f63</citedby><cites>FETCH-LOGICAL-c393t-6b5860756420ca21d4822126ddbfe3523efd2241d4078f8cbf68624197a8c2f63</cites><orcidid>0000-0003-1742-585X ; 0000-0002-9701-4809 ; 0000-0002-2165-3479 ; 0000-0002-6443-9966 ; 0000-0002-0286-7244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Alfwzan, Wafa F.</creatorcontrib><creatorcontrib>Baleanu, Dumitru</creatorcontrib><creatorcontrib>Raza, Ali</creatorcontrib><creatorcontrib>Rafiq, Muhammad</creatorcontrib><creatorcontrib>Ahmed, Nauman</creatorcontrib><title>Dynamical analysis of a class of SEIR models through delayed strategies</title><title>AIP advances</title><description>In recent decades, the mathematical modeling of infectious diseases, real-world problems, non-linear dynamical complex systems, etc., has increased significantly. According to World Health Organization, tobacco use is the cause of about 22% of cancer deaths. Another 10% are due to obesity, poor diet, lack of physical activity, and excessive drinking of alcohol. Approximately 5%–10% of cancers are due to inherited genetic defects. The objective is to investigate the impact of time delays in implementing control measures on the epidemic dynamics. The classification of cell population has four compartments: susceptible cells (x), cancer-infected cells (y), virus-free cells (v), and immune cells (z). Our focus is to find the equilibria of the problem and their stability. The stability of the solutions is of two types: locally asymptotic and globally asymptotic. The Routh–Hurwitz criterion, Volterra-type Lyapunov function, and LaSalle’s invariance principle are used to verify the stability of solutions. The graphical behavior depicts the stable solutions to a real-world problem and supports the stability analysis of the problem. The findings contribute to the understanding of epidemic dynamics and provide valuable information for designing and implementing effective intervention strategies in public health systems.</description><subject>Asymptotic properties</subject><subject>Cancer</subject><subject>Complex systems</subject><subject>Disease control</subject><subject>Epidemics</subject><subject>Immune system</subject><subject>Infectious diseases</subject><subject>Liapunov functions</subject><subject>Public health</subject><subject>Routh-Hurwitz criterion</subject><subject>Stability analysis</subject><subject>System effectiveness</subject><subject>Tobacco</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kE9LAzEQxRdRsNQe_AYLnhS2Jtkkmz1KrbVQEPxzDrPZSZuybWqyPey3d-2KeHIuM-_x4w28JLmmZEqJzO_FlFBRlpydJSNGhcpyxuT5n_symcS4Jf3wkhLFR8nisdvDzhloUthD00UXU29TSE0D8XS-zZev6c7X2MS03QR_XG_SXkCHdRrbAC2uHcar5MJCE3Hys8fJx9P8ffacrV4Wy9nDKjN5mbeZrISSpBCSM2KA0ZorxiiTdV1ZzAXL0daM8d4nhbLKVFYq2euyAGWYlfk4WQ65tYetPgS3g9BpD06fDB_WGkLrTIMasJIcsaJokZc1UyixYKUpVGEBC9Nn3QxZh-A_jxhbvfXH0LcQNVO5FKWiQvTU7UCZ4GMMaH-_UqK_a9dC_9Tes3cDG41roXV-_w_8BW8-f-s</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Alfwzan, Wafa F.</creator><creator>Baleanu, Dumitru</creator><creator>Raza, Ali</creator><creator>Rafiq, Muhammad</creator><creator>Ahmed, Nauman</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1742-585X</orcidid><orcidid>https://orcid.org/0000-0002-9701-4809</orcidid><orcidid>https://orcid.org/0000-0002-2165-3479</orcidid><orcidid>https://orcid.org/0000-0002-6443-9966</orcidid><orcidid>https://orcid.org/0000-0002-0286-7244</orcidid></search><sort><creationdate>20230701</creationdate><title>Dynamical analysis of a class of SEIR models through delayed strategies</title><author>Alfwzan, Wafa F. ; Baleanu, Dumitru ; Raza, Ali ; Rafiq, Muhammad ; Ahmed, Nauman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-6b5860756420ca21d4822126ddbfe3523efd2241d4078f8cbf68624197a8c2f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymptotic properties</topic><topic>Cancer</topic><topic>Complex systems</topic><topic>Disease control</topic><topic>Epidemics</topic><topic>Immune system</topic><topic>Infectious diseases</topic><topic>Liapunov functions</topic><topic>Public health</topic><topic>Routh-Hurwitz criterion</topic><topic>Stability analysis</topic><topic>System effectiveness</topic><topic>Tobacco</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alfwzan, Wafa F.</creatorcontrib><creatorcontrib>Baleanu, Dumitru</creatorcontrib><creatorcontrib>Raza, Ali</creatorcontrib><creatorcontrib>Rafiq, Muhammad</creatorcontrib><creatorcontrib>Ahmed, Nauman</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alfwzan, Wafa F.</au><au>Baleanu, Dumitru</au><au>Raza, Ali</au><au>Rafiq, Muhammad</au><au>Ahmed, Nauman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamical analysis of a class of SEIR models through delayed strategies</atitle><jtitle>AIP advances</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>13</volume><issue>7</issue><spage>075115</spage><epage>075115-10</epage><pages>075115-075115-10</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>In recent decades, the mathematical modeling of infectious diseases, real-world problems, non-linear dynamical complex systems, etc., has increased significantly. According to World Health Organization, tobacco use is the cause of about 22% of cancer deaths. Another 10% are due to obesity, poor diet, lack of physical activity, and excessive drinking of alcohol. Approximately 5%–10% of cancers are due to inherited genetic defects. The objective is to investigate the impact of time delays in implementing control measures on the epidemic dynamics. The classification of cell population has four compartments: susceptible cells (x), cancer-infected cells (y), virus-free cells (v), and immune cells (z). Our focus is to find the equilibria of the problem and their stability. The stability of the solutions is of two types: locally asymptotic and globally asymptotic. The Routh–Hurwitz criterion, Volterra-type Lyapunov function, and LaSalle’s invariance principle are used to verify the stability of solutions. The graphical behavior depicts the stable solutions to a real-world problem and supports the stability analysis of the problem. The findings contribute to the understanding of epidemic dynamics and provide valuable information for designing and implementing effective intervention strategies in public health systems.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0159942</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1742-585X</orcidid><orcidid>https://orcid.org/0000-0002-9701-4809</orcidid><orcidid>https://orcid.org/0000-0002-2165-3479</orcidid><orcidid>https://orcid.org/0000-0002-6443-9966</orcidid><orcidid>https://orcid.org/0000-0002-0286-7244</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2023-07, Vol.13 (7), p.075115-075115-10
issn 2158-3226
2158-3226
language eng
recordid cdi_scitation_primary_10_1063_5_0159942
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Asymptotic properties
Cancer
Complex systems
Disease control
Epidemics
Immune system
Infectious diseases
Liapunov functions
Public health
Routh-Hurwitz criterion
Stability analysis
System effectiveness
Tobacco
title Dynamical analysis of a class of SEIR models through delayed strategies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A12%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamical%20analysis%20of%20a%20class%20of%20SEIR%20models%20through%20delayed%20strategies&rft.jtitle=AIP%20advances&rft.au=Alfwzan,%20Wafa%20F.&rft.date=2023-07-01&rft.volume=13&rft.issue=7&rft.spage=075115&rft.epage=075115-10&rft.pages=075115-075115-10&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0159942&rft_dat=%3Cproquest_scita%3E2836598155%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836598155&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_aeb64eeb1efe49d28e6e729c787fae7c&rfr_iscdi=true