Shock recompression of the metal spall fracture region based on macroscopic simulations
We study shock recompression of the metal spall fracture region using macroscopic simulations in a wide range of initial parameters. Recompression states are mainly analyzed based on different simulation methods. First, we employ an empirical numerical treatment within the fracture post-processing m...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2023-08, Vol.134 (6) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 134 |
creator | Liu, Jun Gao, Cong-Zhang Zhao, Yan-Hong Sun, Zhi-Yuan Yin, Jian-Wei He, An-Min Wang, Pei |
description | We study shock recompression of the metal spall fracture region using macroscopic simulations in a wide range of initial parameters. Recompression states are mainly analyzed based on different simulation methods. First, we employ an empirical numerical treatment within the fracture post-processing model, resulting in a good agreement with experimental data of porous metals. To further validate its applicability, we carry out direct simulations that distinguish various initial fractured states, and we find that the influence of an initial fractured state on the recompression state is remarkable, especially the temperature. By comparing recompression states calculated by two different simulation methods, it reveals that empirical-treatment-based simulations actually describe fragment-state recompression. The present study shows that empirical-treatment-based simulations are physically capable of describing the shock recompression of fractured metals, which might be potentially used to investigate detonation-driven experiments with more complicated physical scenarios. |
doi_str_mv | 10.1063/5.0156920 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0156920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2850345623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-be339ecea434f71ca30d6ed3df4b6781fdb1cc42d97515ca8412aa1ff6dea6043</originalsourceid><addsrcrecordid>eNp90EtLw0AQAOBFFKzVg_9gwZNC6uwzyVGKLyh4UPG4bPZhU5Nu3N0c_PemtmdPMzAf80LoksCCgGS3YgFEyJrCEZoRqOqiFAKO0QyAkqKqy_oUnaW0ASCkYvUMfbyug_nC0ZnQD9Gl1IYtDh7ntcO9y7rDadBdh33UJo_RTfJzRxqdnMVT0msTQzJhaA1ObT92Ok_1dI5OvO6SuzjEOXp_uH9bPhWrl8fn5d2qMFTQXDSOsdoZpznjviRGM7DSWWY9b2RZEW8bYgynti4FEUZXnFCtiffSOi2Bszm62vcdYvgeXcpqE8a4nUYqWglgXEjKJnW9V7tdU3ReDbHtdfxRBNTub0qow98me7O3ybT575h_8C8vlW5Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2850345623</pqid></control><display><type>article</type><title>Shock recompression of the metal spall fracture region based on macroscopic simulations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Liu, Jun ; Gao, Cong-Zhang ; Zhao, Yan-Hong ; Sun, Zhi-Yuan ; Yin, Jian-Wei ; He, An-Min ; Wang, Pei</creator><creatorcontrib>Liu, Jun ; Gao, Cong-Zhang ; Zhao, Yan-Hong ; Sun, Zhi-Yuan ; Yin, Jian-Wei ; He, An-Min ; Wang, Pei</creatorcontrib><description>We study shock recompression of the metal spall fracture region using macroscopic simulations in a wide range of initial parameters. Recompression states are mainly analyzed based on different simulation methods. First, we employ an empirical numerical treatment within the fracture post-processing model, resulting in a good agreement with experimental data of porous metals. To further validate its applicability, we carry out direct simulations that distinguish various initial fractured states, and we find that the influence of an initial fractured state on the recompression state is remarkable, especially the temperature. By comparing recompression states calculated by two different simulation methods, it reveals that empirical-treatment-based simulations actually describe fragment-state recompression. The present study shows that empirical-treatment-based simulations are physically capable of describing the shock recompression of fractured metals, which might be potentially used to investigate detonation-driven experiments with more complicated physical scenarios.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0156920</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Compressing ; Detonation ; Empirical analysis ; Porous metals ; Simulation</subject><ispartof>Journal of applied physics, 2023-08, Vol.134 (6)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-be339ecea434f71ca30d6ed3df4b6781fdb1cc42d97515ca8412aa1ff6dea6043</cites><orcidid>0000-0002-3586-5130 ; 0000-0002-1342-6890 ; 0000-0002-4105-502X ; 0000-0001-7948-9416 ; 0000-0002-4766-4379 ; 0000-0003-4196-7069</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0156920$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Gao, Cong-Zhang</creatorcontrib><creatorcontrib>Zhao, Yan-Hong</creatorcontrib><creatorcontrib>Sun, Zhi-Yuan</creatorcontrib><creatorcontrib>Yin, Jian-Wei</creatorcontrib><creatorcontrib>He, An-Min</creatorcontrib><creatorcontrib>Wang, Pei</creatorcontrib><title>Shock recompression of the metal spall fracture region based on macroscopic simulations</title><title>Journal of applied physics</title><description>We study shock recompression of the metal spall fracture region using macroscopic simulations in a wide range of initial parameters. Recompression states are mainly analyzed based on different simulation methods. First, we employ an empirical numerical treatment within the fracture post-processing model, resulting in a good agreement with experimental data of porous metals. To further validate its applicability, we carry out direct simulations that distinguish various initial fractured states, and we find that the influence of an initial fractured state on the recompression state is remarkable, especially the temperature. By comparing recompression states calculated by two different simulation methods, it reveals that empirical-treatment-based simulations actually describe fragment-state recompression. The present study shows that empirical-treatment-based simulations are physically capable of describing the shock recompression of fractured metals, which might be potentially used to investigate detonation-driven experiments with more complicated physical scenarios.</description><subject>Applied physics</subject><subject>Compressing</subject><subject>Detonation</subject><subject>Empirical analysis</subject><subject>Porous metals</subject><subject>Simulation</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90EtLw0AQAOBFFKzVg_9gwZNC6uwzyVGKLyh4UPG4bPZhU5Nu3N0c_PemtmdPMzAf80LoksCCgGS3YgFEyJrCEZoRqOqiFAKO0QyAkqKqy_oUnaW0ASCkYvUMfbyug_nC0ZnQD9Gl1IYtDh7ntcO9y7rDadBdh33UJo_RTfJzRxqdnMVT0msTQzJhaA1ObT92Ok_1dI5OvO6SuzjEOXp_uH9bPhWrl8fn5d2qMFTQXDSOsdoZpznjviRGM7DSWWY9b2RZEW8bYgynti4FEUZXnFCtiffSOi2Bszm62vcdYvgeXcpqE8a4nUYqWglgXEjKJnW9V7tdU3ReDbHtdfxRBNTub0qow98me7O3ybT575h_8C8vlW5Z</recordid><startdate>20230814</startdate><enddate>20230814</enddate><creator>Liu, Jun</creator><creator>Gao, Cong-Zhang</creator><creator>Zhao, Yan-Hong</creator><creator>Sun, Zhi-Yuan</creator><creator>Yin, Jian-Wei</creator><creator>He, An-Min</creator><creator>Wang, Pei</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3586-5130</orcidid><orcidid>https://orcid.org/0000-0002-1342-6890</orcidid><orcidid>https://orcid.org/0000-0002-4105-502X</orcidid><orcidid>https://orcid.org/0000-0001-7948-9416</orcidid><orcidid>https://orcid.org/0000-0002-4766-4379</orcidid><orcidid>https://orcid.org/0000-0003-4196-7069</orcidid></search><sort><creationdate>20230814</creationdate><title>Shock recompression of the metal spall fracture region based on macroscopic simulations</title><author>Liu, Jun ; Gao, Cong-Zhang ; Zhao, Yan-Hong ; Sun, Zhi-Yuan ; Yin, Jian-Wei ; He, An-Min ; Wang, Pei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-be339ecea434f71ca30d6ed3df4b6781fdb1cc42d97515ca8412aa1ff6dea6043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Compressing</topic><topic>Detonation</topic><topic>Empirical analysis</topic><topic>Porous metals</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Gao, Cong-Zhang</creatorcontrib><creatorcontrib>Zhao, Yan-Hong</creatorcontrib><creatorcontrib>Sun, Zhi-Yuan</creatorcontrib><creatorcontrib>Yin, Jian-Wei</creatorcontrib><creatorcontrib>He, An-Min</creatorcontrib><creatorcontrib>Wang, Pei</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jun</au><au>Gao, Cong-Zhang</au><au>Zhao, Yan-Hong</au><au>Sun, Zhi-Yuan</au><au>Yin, Jian-Wei</au><au>He, An-Min</au><au>Wang, Pei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shock recompression of the metal spall fracture region based on macroscopic simulations</atitle><jtitle>Journal of applied physics</jtitle><date>2023-08-14</date><risdate>2023</risdate><volume>134</volume><issue>6</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>We study shock recompression of the metal spall fracture region using macroscopic simulations in a wide range of initial parameters. Recompression states are mainly analyzed based on different simulation methods. First, we employ an empirical numerical treatment within the fracture post-processing model, resulting in a good agreement with experimental data of porous metals. To further validate its applicability, we carry out direct simulations that distinguish various initial fractured states, and we find that the influence of an initial fractured state on the recompression state is remarkable, especially the temperature. By comparing recompression states calculated by two different simulation methods, it reveals that empirical-treatment-based simulations actually describe fragment-state recompression. The present study shows that empirical-treatment-based simulations are physically capable of describing the shock recompression of fractured metals, which might be potentially used to investigate detonation-driven experiments with more complicated physical scenarios.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0156920</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3586-5130</orcidid><orcidid>https://orcid.org/0000-0002-1342-6890</orcidid><orcidid>https://orcid.org/0000-0002-4105-502X</orcidid><orcidid>https://orcid.org/0000-0001-7948-9416</orcidid><orcidid>https://orcid.org/0000-0002-4766-4379</orcidid><orcidid>https://orcid.org/0000-0003-4196-7069</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2023-08, Vol.134 (6) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0156920 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Compressing Detonation Empirical analysis Porous metals Simulation |
title | Shock recompression of the metal spall fracture region based on macroscopic simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A24%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shock%20recompression%20of%20the%20metal%20spall%20fracture%20region%20based%20on%20macroscopic%20simulations&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Liu,%20Jun&rft.date=2023-08-14&rft.volume=134&rft.issue=6&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0156920&rft_dat=%3Cproquest_scita%3E2850345623%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2850345623&rft_id=info:pmid/&rfr_iscdi=true |