Shock recompression of the metal spall fracture region based on macroscopic simulations

We study shock recompression of the metal spall fracture region using macroscopic simulations in a wide range of initial parameters. Recompression states are mainly analyzed based on different simulation methods. First, we employ an empirical numerical treatment within the fracture post-processing m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2023-08, Vol.134 (6)
Hauptverfasser: Liu, Jun, Gao, Cong-Zhang, Zhao, Yan-Hong, Sun, Zhi-Yuan, Yin, Jian-Wei, He, An-Min, Wang, Pei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Journal of applied physics
container_volume 134
creator Liu, Jun
Gao, Cong-Zhang
Zhao, Yan-Hong
Sun, Zhi-Yuan
Yin, Jian-Wei
He, An-Min
Wang, Pei
description We study shock recompression of the metal spall fracture region using macroscopic simulations in a wide range of initial parameters. Recompression states are mainly analyzed based on different simulation methods. First, we employ an empirical numerical treatment within the fracture post-processing model, resulting in a good agreement with experimental data of porous metals. To further validate its applicability, we carry out direct simulations that distinguish various initial fractured states, and we find that the influence of an initial fractured state on the recompression state is remarkable, especially the temperature. By comparing recompression states calculated by two different simulation methods, it reveals that empirical-treatment-based simulations actually describe fragment-state recompression. The present study shows that empirical-treatment-based simulations are physically capable of describing the shock recompression of fractured metals, which might be potentially used to investigate detonation-driven experiments with more complicated physical scenarios.
doi_str_mv 10.1063/5.0156920
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0156920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2850345623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-be339ecea434f71ca30d6ed3df4b6781fdb1cc42d97515ca8412aa1ff6dea6043</originalsourceid><addsrcrecordid>eNp90EtLw0AQAOBFFKzVg_9gwZNC6uwzyVGKLyh4UPG4bPZhU5Nu3N0c_PemtmdPMzAf80LoksCCgGS3YgFEyJrCEZoRqOqiFAKO0QyAkqKqy_oUnaW0ASCkYvUMfbyug_nC0ZnQD9Gl1IYtDh7ntcO9y7rDadBdh33UJo_RTfJzRxqdnMVT0msTQzJhaA1ObT92Ok_1dI5OvO6SuzjEOXp_uH9bPhWrl8fn5d2qMFTQXDSOsdoZpznjviRGM7DSWWY9b2RZEW8bYgynti4FEUZXnFCtiffSOi2Bszm62vcdYvgeXcpqE8a4nUYqWglgXEjKJnW9V7tdU3ReDbHtdfxRBNTub0qow98me7O3ybT575h_8C8vlW5Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2850345623</pqid></control><display><type>article</type><title>Shock recompression of the metal spall fracture region based on macroscopic simulations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Liu, Jun ; Gao, Cong-Zhang ; Zhao, Yan-Hong ; Sun, Zhi-Yuan ; Yin, Jian-Wei ; He, An-Min ; Wang, Pei</creator><creatorcontrib>Liu, Jun ; Gao, Cong-Zhang ; Zhao, Yan-Hong ; Sun, Zhi-Yuan ; Yin, Jian-Wei ; He, An-Min ; Wang, Pei</creatorcontrib><description>We study shock recompression of the metal spall fracture region using macroscopic simulations in a wide range of initial parameters. Recompression states are mainly analyzed based on different simulation methods. First, we employ an empirical numerical treatment within the fracture post-processing model, resulting in a good agreement with experimental data of porous metals. To further validate its applicability, we carry out direct simulations that distinguish various initial fractured states, and we find that the influence of an initial fractured state on the recompression state is remarkable, especially the temperature. By comparing recompression states calculated by two different simulation methods, it reveals that empirical-treatment-based simulations actually describe fragment-state recompression. The present study shows that empirical-treatment-based simulations are physically capable of describing the shock recompression of fractured metals, which might be potentially used to investigate detonation-driven experiments with more complicated physical scenarios.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0156920</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Compressing ; Detonation ; Empirical analysis ; Porous metals ; Simulation</subject><ispartof>Journal of applied physics, 2023-08, Vol.134 (6)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-be339ecea434f71ca30d6ed3df4b6781fdb1cc42d97515ca8412aa1ff6dea6043</cites><orcidid>0000-0002-3586-5130 ; 0000-0002-1342-6890 ; 0000-0002-4105-502X ; 0000-0001-7948-9416 ; 0000-0002-4766-4379 ; 0000-0003-4196-7069</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0156920$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Gao, Cong-Zhang</creatorcontrib><creatorcontrib>Zhao, Yan-Hong</creatorcontrib><creatorcontrib>Sun, Zhi-Yuan</creatorcontrib><creatorcontrib>Yin, Jian-Wei</creatorcontrib><creatorcontrib>He, An-Min</creatorcontrib><creatorcontrib>Wang, Pei</creatorcontrib><title>Shock recompression of the metal spall fracture region based on macroscopic simulations</title><title>Journal of applied physics</title><description>We study shock recompression of the metal spall fracture region using macroscopic simulations in a wide range of initial parameters. Recompression states are mainly analyzed based on different simulation methods. First, we employ an empirical numerical treatment within the fracture post-processing model, resulting in a good agreement with experimental data of porous metals. To further validate its applicability, we carry out direct simulations that distinguish various initial fractured states, and we find that the influence of an initial fractured state on the recompression state is remarkable, especially the temperature. By comparing recompression states calculated by two different simulation methods, it reveals that empirical-treatment-based simulations actually describe fragment-state recompression. The present study shows that empirical-treatment-based simulations are physically capable of describing the shock recompression of fractured metals, which might be potentially used to investigate detonation-driven experiments with more complicated physical scenarios.</description><subject>Applied physics</subject><subject>Compressing</subject><subject>Detonation</subject><subject>Empirical analysis</subject><subject>Porous metals</subject><subject>Simulation</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90EtLw0AQAOBFFKzVg_9gwZNC6uwzyVGKLyh4UPG4bPZhU5Nu3N0c_PemtmdPMzAf80LoksCCgGS3YgFEyJrCEZoRqOqiFAKO0QyAkqKqy_oUnaW0ASCkYvUMfbyug_nC0ZnQD9Gl1IYtDh7ntcO9y7rDadBdh33UJo_RTfJzRxqdnMVT0msTQzJhaA1ObT92Ok_1dI5OvO6SuzjEOXp_uH9bPhWrl8fn5d2qMFTQXDSOsdoZpznjviRGM7DSWWY9b2RZEW8bYgynti4FEUZXnFCtiffSOi2Bszm62vcdYvgeXcpqE8a4nUYqWglgXEjKJnW9V7tdU3ReDbHtdfxRBNTub0qow98me7O3ybT575h_8C8vlW5Z</recordid><startdate>20230814</startdate><enddate>20230814</enddate><creator>Liu, Jun</creator><creator>Gao, Cong-Zhang</creator><creator>Zhao, Yan-Hong</creator><creator>Sun, Zhi-Yuan</creator><creator>Yin, Jian-Wei</creator><creator>He, An-Min</creator><creator>Wang, Pei</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3586-5130</orcidid><orcidid>https://orcid.org/0000-0002-1342-6890</orcidid><orcidid>https://orcid.org/0000-0002-4105-502X</orcidid><orcidid>https://orcid.org/0000-0001-7948-9416</orcidid><orcidid>https://orcid.org/0000-0002-4766-4379</orcidid><orcidid>https://orcid.org/0000-0003-4196-7069</orcidid></search><sort><creationdate>20230814</creationdate><title>Shock recompression of the metal spall fracture region based on macroscopic simulations</title><author>Liu, Jun ; Gao, Cong-Zhang ; Zhao, Yan-Hong ; Sun, Zhi-Yuan ; Yin, Jian-Wei ; He, An-Min ; Wang, Pei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-be339ecea434f71ca30d6ed3df4b6781fdb1cc42d97515ca8412aa1ff6dea6043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Compressing</topic><topic>Detonation</topic><topic>Empirical analysis</topic><topic>Porous metals</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Gao, Cong-Zhang</creatorcontrib><creatorcontrib>Zhao, Yan-Hong</creatorcontrib><creatorcontrib>Sun, Zhi-Yuan</creatorcontrib><creatorcontrib>Yin, Jian-Wei</creatorcontrib><creatorcontrib>He, An-Min</creatorcontrib><creatorcontrib>Wang, Pei</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jun</au><au>Gao, Cong-Zhang</au><au>Zhao, Yan-Hong</au><au>Sun, Zhi-Yuan</au><au>Yin, Jian-Wei</au><au>He, An-Min</au><au>Wang, Pei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shock recompression of the metal spall fracture region based on macroscopic simulations</atitle><jtitle>Journal of applied physics</jtitle><date>2023-08-14</date><risdate>2023</risdate><volume>134</volume><issue>6</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>We study shock recompression of the metal spall fracture region using macroscopic simulations in a wide range of initial parameters. Recompression states are mainly analyzed based on different simulation methods. First, we employ an empirical numerical treatment within the fracture post-processing model, resulting in a good agreement with experimental data of porous metals. To further validate its applicability, we carry out direct simulations that distinguish various initial fractured states, and we find that the influence of an initial fractured state on the recompression state is remarkable, especially the temperature. By comparing recompression states calculated by two different simulation methods, it reveals that empirical-treatment-based simulations actually describe fragment-state recompression. The present study shows that empirical-treatment-based simulations are physically capable of describing the shock recompression of fractured metals, which might be potentially used to investigate detonation-driven experiments with more complicated physical scenarios.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0156920</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3586-5130</orcidid><orcidid>https://orcid.org/0000-0002-1342-6890</orcidid><orcidid>https://orcid.org/0000-0002-4105-502X</orcidid><orcidid>https://orcid.org/0000-0001-7948-9416</orcidid><orcidid>https://orcid.org/0000-0002-4766-4379</orcidid><orcidid>https://orcid.org/0000-0003-4196-7069</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2023-08, Vol.134 (6)
issn 0021-8979
1089-7550
language eng
recordid cdi_scitation_primary_10_1063_5_0156920
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Compressing
Detonation
Empirical analysis
Porous metals
Simulation
title Shock recompression of the metal spall fracture region based on macroscopic simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A24%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shock%20recompression%20of%20the%20metal%20spall%20fracture%20region%20based%20on%20macroscopic%20simulations&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Liu,%20Jun&rft.date=2023-08-14&rft.volume=134&rft.issue=6&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0156920&rft_dat=%3Cproquest_scita%3E2850345623%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2850345623&rft_id=info:pmid/&rfr_iscdi=true