Linguistics oriented spammed review detection and analysis of spammer behavioral methods
Buying things on ecommerce sites without getting deceived is a cry for aid in today’s environment. Today, an effective and reliable technique for detecting spam reviews is required. Many eCommerce sites enable random product evaluations in order to get good feedback and increase the chances of a sal...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2782 |
creator | Sindhu, C. Singh, Sachin Kumar, Govind Parveen, H. Summia Saradha, S. |
description | Buying things on ecommerce sites without getting deceived is a cry for aid in today’s environment. Today, an effective and reliable technique for detecting spam reviews is required. Many eCommerce sites enable random product evaluations in order to get good feedback and increase the chances of a sale. These ratings and reviews have the potential to mislead the ordinary buyer, leaving them uncertain about whether or not to buy the product. To tackle bogus reviews, innovative methods have been created in the recent past. Modern current research uses supervised learning methods, which need labelled data, which is inadequate for real-time updates. The purpose of this paper is to determine whether or not there are any fraudulent text reviews out there. To accomplish so, we used supervised and unsupervised models and proposed in-depth research methodology for gathering complete CNN and LSTM assessments. We have compared traditional models like Multinomial Naive Bayes, Logistic Regression, and Vector Support Machine to collect spam reviews, and I demonstrated the capabilities of both common and in-depth reading separators. |
doi_str_mv | 10.1063/5.0154935 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0154935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825939054</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-2677bd474ac586f002c8ef363380214cb14820b4a133da9a61c832cf5cb3a8243</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKsL_8GAO2Fq3pNZSvEFBTcK3YU7ScamdCZjklb6753SgjsXl7P5zuWcg9AtwTOCJXsQM0wEr5k4QxMiBCkrSeQ5mmBc85JytrxEVymtMaZ1VakJWi58_7X1KXuTihC967OzRRqg60aNbufdT2Fddib70BfQ2_Fgs09-xNsTGIvGrWDnQ4RN0bm8CjZdo4sWNsndnHSKPp-fPuav5eL95W3-uCgHIlUuqayqxvKKgxFKtmMuo1zLJGMKU8JNQ7iiuOFAGLNQgyRGMWpaYRoGaiw0RXfHv0MM31uXsl6HbRwjJk0VFTWrsThQ90cqGZ_hUEUP0XcQ93oXohb6tJoebPsfTLA-zPxnYL_zd29e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2825939054</pqid></control><display><type>conference_proceeding</type><title>Linguistics oriented spammed review detection and analysis of spammer behavioral methods</title><source>AIP Journals Complete</source><creator>Sindhu, C. ; Singh, Sachin ; Kumar, Govind ; Parveen, H. Summia ; Saradha, S.</creator><contributor>Mamodiya, Udit ; Goyal, Ruchi ; Mutha, Rakhi ; Pratap, Bhanu ; Goyal, Dinesh</contributor><creatorcontrib>Sindhu, C. ; Singh, Sachin ; Kumar, Govind ; Parveen, H. Summia ; Saradha, S. ; Mamodiya, Udit ; Goyal, Ruchi ; Mutha, Rakhi ; Pratap, Bhanu ; Goyal, Dinesh</creatorcontrib><description>Buying things on ecommerce sites without getting deceived is a cry for aid in today’s environment. Today, an effective and reliable technique for detecting spam reviews is required. Many eCommerce sites enable random product evaluations in order to get good feedback and increase the chances of a sale. These ratings and reviews have the potential to mislead the ordinary buyer, leaving them uncertain about whether or not to buy the product. To tackle bogus reviews, innovative methods have been created in the recent past. Modern current research uses supervised learning methods, which need labelled data, which is inadequate for real-time updates. The purpose of this paper is to determine whether or not there are any fraudulent text reviews out there. To accomplish so, we used supervised and unsupervised models and proposed in-depth research methodology for gathering complete CNN and LSTM assessments. We have compared traditional models like Multinomial Naive Bayes, Logistic Regression, and Vector Support Machine to collect spam reviews, and I demonstrated the capabilities of both common and in-depth reading separators.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0154935</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Electronic commerce ; Linguistics ; Supervised learning ; Support vector machines</subject><ispartof>AIP conference proceedings, 2023, Vol.2782 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0154935$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76126</link.rule.ids></links><search><contributor>Mamodiya, Udit</contributor><contributor>Goyal, Ruchi</contributor><contributor>Mutha, Rakhi</contributor><contributor>Pratap, Bhanu</contributor><contributor>Goyal, Dinesh</contributor><creatorcontrib>Sindhu, C.</creatorcontrib><creatorcontrib>Singh, Sachin</creatorcontrib><creatorcontrib>Kumar, Govind</creatorcontrib><creatorcontrib>Parveen, H. Summia</creatorcontrib><creatorcontrib>Saradha, S.</creatorcontrib><title>Linguistics oriented spammed review detection and analysis of spammer behavioral methods</title><title>AIP conference proceedings</title><description>Buying things on ecommerce sites without getting deceived is a cry for aid in today’s environment. Today, an effective and reliable technique for detecting spam reviews is required. Many eCommerce sites enable random product evaluations in order to get good feedback and increase the chances of a sale. These ratings and reviews have the potential to mislead the ordinary buyer, leaving them uncertain about whether or not to buy the product. To tackle bogus reviews, innovative methods have been created in the recent past. Modern current research uses supervised learning methods, which need labelled data, which is inadequate for real-time updates. The purpose of this paper is to determine whether or not there are any fraudulent text reviews out there. To accomplish so, we used supervised and unsupervised models and proposed in-depth research methodology for gathering complete CNN and LSTM assessments. We have compared traditional models like Multinomial Naive Bayes, Logistic Regression, and Vector Support Machine to collect spam reviews, and I demonstrated the capabilities of both common and in-depth reading separators.</description><subject>Electronic commerce</subject><subject>Linguistics</subject><subject>Supervised learning</subject><subject>Support vector machines</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEtLAzEUhYMoWKsL_8GAO2Fq3pNZSvEFBTcK3YU7ScamdCZjklb6753SgjsXl7P5zuWcg9AtwTOCJXsQM0wEr5k4QxMiBCkrSeQ5mmBc85JytrxEVymtMaZ1VakJWi58_7X1KXuTihC967OzRRqg60aNbufdT2Fddib70BfQ2_Fgs09-xNsTGIvGrWDnQ4RN0bm8CjZdo4sWNsndnHSKPp-fPuav5eL95W3-uCgHIlUuqayqxvKKgxFKtmMuo1zLJGMKU8JNQ7iiuOFAGLNQgyRGMWpaYRoGaiw0RXfHv0MM31uXsl6HbRwjJk0VFTWrsThQ90cqGZ_hUEUP0XcQ93oXohb6tJoebPsfTLA-zPxnYL_zd29e</recordid><startdate>20230615</startdate><enddate>20230615</enddate><creator>Sindhu, C.</creator><creator>Singh, Sachin</creator><creator>Kumar, Govind</creator><creator>Parveen, H. Summia</creator><creator>Saradha, S.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230615</creationdate><title>Linguistics oriented spammed review detection and analysis of spammer behavioral methods</title><author>Sindhu, C. ; Singh, Sachin ; Kumar, Govind ; Parveen, H. Summia ; Saradha, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-2677bd474ac586f002c8ef363380214cb14820b4a133da9a61c832cf5cb3a8243</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Electronic commerce</topic><topic>Linguistics</topic><topic>Supervised learning</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sindhu, C.</creatorcontrib><creatorcontrib>Singh, Sachin</creatorcontrib><creatorcontrib>Kumar, Govind</creatorcontrib><creatorcontrib>Parveen, H. Summia</creatorcontrib><creatorcontrib>Saradha, S.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sindhu, C.</au><au>Singh, Sachin</au><au>Kumar, Govind</au><au>Parveen, H. Summia</au><au>Saradha, S.</au><au>Mamodiya, Udit</au><au>Goyal, Ruchi</au><au>Mutha, Rakhi</au><au>Pratap, Bhanu</au><au>Goyal, Dinesh</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Linguistics oriented spammed review detection and analysis of spammer behavioral methods</atitle><btitle>AIP conference proceedings</btitle><date>2023-06-15</date><risdate>2023</risdate><volume>2782</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Buying things on ecommerce sites without getting deceived is a cry for aid in today’s environment. Today, an effective and reliable technique for detecting spam reviews is required. Many eCommerce sites enable random product evaluations in order to get good feedback and increase the chances of a sale. These ratings and reviews have the potential to mislead the ordinary buyer, leaving them uncertain about whether or not to buy the product. To tackle bogus reviews, innovative methods have been created in the recent past. Modern current research uses supervised learning methods, which need labelled data, which is inadequate for real-time updates. The purpose of this paper is to determine whether or not there are any fraudulent text reviews out there. To accomplish so, we used supervised and unsupervised models and proposed in-depth research methodology for gathering complete CNN and LSTM assessments. We have compared traditional models like Multinomial Naive Bayes, Logistic Regression, and Vector Support Machine to collect spam reviews, and I demonstrated the capabilities of both common and in-depth reading separators.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0154935</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2023, Vol.2782 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0154935 |
source | AIP Journals Complete |
subjects | Electronic commerce Linguistics Supervised learning Support vector machines |
title | Linguistics oriented spammed review detection and analysis of spammer behavioral methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A08%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Linguistics%20oriented%20spammed%20review%20detection%20and%20analysis%20of%20spammer%20behavioral%20methods&rft.btitle=AIP%20conference%20proceedings&rft.au=Sindhu,%20C.&rft.date=2023-06-15&rft.volume=2782&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0154935&rft_dat=%3Cproquest_scita%3E2825939054%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825939054&rft_id=info:pmid/&rfr_iscdi=true |