WOA-XGboost classifier to detect XSS attacks

As the internet grows, online services increase year by year, so people also use web applications to make life easier. Almost all companies and organizations use the latest technology and web applications to provide services like online business, banking transactions, and social media. It makes our...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sharma, Seema, Yadav, Narendra Singh
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2782
creator Sharma, Seema
Yadav, Narendra Singh
description As the internet grows, online services increase year by year, so people also use web applications to make life easier. Almost all companies and organizations use the latest technology and web applications to provide services like online business, banking transactions, and social media. It makes our life advances to word technology, but it also has some backing, such as our stolen information. The cross-site attack is most frequent in web security flaws. It is also mentioned in OWSP as the top ten. This paper proposed WOA-XGboost, a web XSS attack detection framework. Whale Optimization Algorithm (WOA) is one of the nature-inspired optimization algorithms that repeat humpback whales’ community actions, pick the feature selection subset, and apply an XG boost classifier to detect the attack. We also cover the existing research gap with a high prediction rate. The proposed methods achieve recall,Accuracy, False Positive rate, False Positive rate, Precision, F-measure, Entropy as 98.2%, 99.8%,0.00039,096%,97.1%,0.0391 respectively.
doi_str_mv 10.1063/5.0154460
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0154460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825938740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c208t-f0544dc9dfa1920c7260205494de1133dac9044c9390fd3d455b0056609935643</originalsourceid><addsrcrecordid>eNp9kE1LAzEYhIMouFYP_oMFb2Lqm8_dHEvRKhR6qOLeQpoP2FqbmqSC_96VFrx5GhgeZoZB6JrAmIBk92IMRHAu4QRVRAiCG0nkKaoAFMeUs-4cXeS8BqCqadoK3b0tJribrWLMpbYbk3Mfep_qEmvni7el7pbL2pRi7Hu-RGfBbLK_OuoIvT4-vEyf8Hwxe55O5thSaAsOMCxwVrlgiKJgGyqBDp7izhPCmDNWAedWMQXBMceFWAEIKUEpJiRnI3RzyN2l-Ln3ueh13KftUKlpS4VibcNhoG4PVLZ9MaWPW71L_YdJ35qA_n1DC3184z_4K6Y_UO9cYD-IKlxv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2825938740</pqid></control><display><type>conference_proceeding</type><title>WOA-XGboost classifier to detect XSS attacks</title><source>AIP Journals Complete</source><creator>Sharma, Seema ; Yadav, Narendra Singh</creator><contributor>Mamodiya, Udit ; Goyal, Ruchi ; Mutha, Rakhi ; Pratap, Bhanu ; Goyal, Dinesh</contributor><creatorcontrib>Sharma, Seema ; Yadav, Narendra Singh ; Mamodiya, Udit ; Goyal, Ruchi ; Mutha, Rakhi ; Pratap, Bhanu ; Goyal, Dinesh</creatorcontrib><description>As the internet grows, online services increase year by year, so people also use web applications to make life easier. Almost all companies and organizations use the latest technology and web applications to provide services like online business, banking transactions, and social media. It makes our life advances to word technology, but it also has some backing, such as our stolen information. The cross-site attack is most frequent in web security flaws. It is also mentioned in OWSP as the top ten. This paper proposed WOA-XGboost, a web XSS attack detection framework. Whale Optimization Algorithm (WOA) is one of the nature-inspired optimization algorithms that repeat humpback whales’ community actions, pick the feature selection subset, and apply an XG boost classifier to detect the attack. We also cover the existing research gap with a high prediction rate. The proposed methods achieve recall,Accuracy, False Positive rate, False Positive rate, Precision, F-measure, Entropy as 98.2%, 99.8%,0.00039,096%,97.1%,0.0391 respectively.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0154460</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Applications programs ; Classifiers ; Flaw detection ; Optimization</subject><ispartof>AIP conference proceedings, 2023, Vol.2782 (1)</ispartof><rights>AIP Publishing LLC</rights><rights>2023 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c208t-f0544dc9dfa1920c7260205494de1133dac9044c9390fd3d455b0056609935643</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0154460$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4510,23929,23930,25139,27923,27924,76155</link.rule.ids></links><search><contributor>Mamodiya, Udit</contributor><contributor>Goyal, Ruchi</contributor><contributor>Mutha, Rakhi</contributor><contributor>Pratap, Bhanu</contributor><contributor>Goyal, Dinesh</contributor><creatorcontrib>Sharma, Seema</creatorcontrib><creatorcontrib>Yadav, Narendra Singh</creatorcontrib><title>WOA-XGboost classifier to detect XSS attacks</title><title>AIP conference proceedings</title><description>As the internet grows, online services increase year by year, so people also use web applications to make life easier. Almost all companies and organizations use the latest technology and web applications to provide services like online business, banking transactions, and social media. It makes our life advances to word technology, but it also has some backing, such as our stolen information. The cross-site attack is most frequent in web security flaws. It is also mentioned in OWSP as the top ten. This paper proposed WOA-XGboost, a web XSS attack detection framework. Whale Optimization Algorithm (WOA) is one of the nature-inspired optimization algorithms that repeat humpback whales’ community actions, pick the feature selection subset, and apply an XG boost classifier to detect the attack. We also cover the existing research gap with a high prediction rate. The proposed methods achieve recall,Accuracy, False Positive rate, False Positive rate, Precision, F-measure, Entropy as 98.2%, 99.8%,0.00039,096%,97.1%,0.0391 respectively.</description><subject>Algorithms</subject><subject>Applications programs</subject><subject>Classifiers</subject><subject>Flaw detection</subject><subject>Optimization</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE1LAzEYhIMouFYP_oMFb2Lqm8_dHEvRKhR6qOLeQpoP2FqbmqSC_96VFrx5GhgeZoZB6JrAmIBk92IMRHAu4QRVRAiCG0nkKaoAFMeUs-4cXeS8BqCqadoK3b0tJribrWLMpbYbk3Mfep_qEmvni7el7pbL2pRi7Hu-RGfBbLK_OuoIvT4-vEyf8Hwxe55O5thSaAsOMCxwVrlgiKJgGyqBDp7izhPCmDNWAedWMQXBMceFWAEIKUEpJiRnI3RzyN2l-Ln3ueh13KftUKlpS4VibcNhoG4PVLZ9MaWPW71L_YdJ35qA_n1DC3184z_4K6Y_UO9cYD-IKlxv</recordid><startdate>20230615</startdate><enddate>20230615</enddate><creator>Sharma, Seema</creator><creator>Yadav, Narendra Singh</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230615</creationdate><title>WOA-XGboost classifier to detect XSS attacks</title><author>Sharma, Seema ; Yadav, Narendra Singh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c208t-f0544dc9dfa1920c7260205494de1133dac9044c9390fd3d455b0056609935643</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Applications programs</topic><topic>Classifiers</topic><topic>Flaw detection</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Seema</creatorcontrib><creatorcontrib>Yadav, Narendra Singh</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Seema</au><au>Yadav, Narendra Singh</au><au>Mamodiya, Udit</au><au>Goyal, Ruchi</au><au>Mutha, Rakhi</au><au>Pratap, Bhanu</au><au>Goyal, Dinesh</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>WOA-XGboost classifier to detect XSS attacks</atitle><btitle>AIP conference proceedings</btitle><date>2023-06-15</date><risdate>2023</risdate><volume>2782</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>As the internet grows, online services increase year by year, so people also use web applications to make life easier. Almost all companies and organizations use the latest technology and web applications to provide services like online business, banking transactions, and social media. It makes our life advances to word technology, but it also has some backing, such as our stolen information. The cross-site attack is most frequent in web security flaws. It is also mentioned in OWSP as the top ten. This paper proposed WOA-XGboost, a web XSS attack detection framework. Whale Optimization Algorithm (WOA) is one of the nature-inspired optimization algorithms that repeat humpback whales’ community actions, pick the feature selection subset, and apply an XG boost classifier to detect the attack. We also cover the existing research gap with a high prediction rate. The proposed methods achieve recall,Accuracy, False Positive rate, False Positive rate, Precision, F-measure, Entropy as 98.2%, 99.8%,0.00039,096%,97.1%,0.0391 respectively.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0154460</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2782 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0154460
source AIP Journals Complete
subjects Algorithms
Applications programs
Classifiers
Flaw detection
Optimization
title WOA-XGboost classifier to detect XSS attacks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A06%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=WOA-XGboost%20classifier%20to%20detect%20XSS%20attacks&rft.btitle=AIP%20conference%20proceedings&rft.au=Sharma,%20Seema&rft.date=2023-06-15&rft.volume=2782&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0154460&rft_dat=%3Cproquest_scita%3E2825938740%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825938740&rft_id=info:pmid/&rfr_iscdi=true