Marangoni instability in oblate droplets suspended on a circular frame

We study theoretically internal flows in a small oblate droplet suspended on the circular frame. Marangoni convection arises due to a vertical temperature gradient across the drop and is driven by the surface tension variations at the free drop interface. Using the analytical basis for the solutions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2023-07, Vol.35 (7)
Hauptverfasser: Shishkin, M. A., Kolegov, K. S., Pikin, S. A., Ostrovskii, B. I., Pikina, E. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Physics of fluids (1994)
container_volume 35
creator Shishkin, M. A.
Kolegov, K. S.
Pikin, S. A.
Ostrovskii, B. I.
Pikina, E. S.
description We study theoretically internal flows in a small oblate droplet suspended on the circular frame. Marangoni convection arises due to a vertical temperature gradient across the drop and is driven by the surface tension variations at the free drop interface. Using the analytical basis for the solutions of Stokes equation in coordinates of oblate spheroid, we have derived the linearly independent stationary solutions for Marangoni convection in terms of Stokes stream functions. The numerical simulations of the thermocapillary motion in the drops are used to study the onset of the stationary regime. Both analytical and numerical calculations predict the axially symmetric circulatory convection motion in the drop, the dynamics of which is determined by the magnitude of the temperature gradient across the drop. The analytical solutions for the critical temperature distribution and velocity fields are obtained for the large temperature gradients across the oblate drop. These solutions reveal the lateral separation of the critical and stationary motions within the drops. The critical vortices are localized near the central part of a drop, while the intensive stationary flow is located closer to its butt end. A crossover to the limit of the plane film is studied within the formalism of the stream functions by reducing the droplet ellipticity ratio to zero value. The initial stationary regime for the strongly oblate drops becomes unstable relative to the many-vortex perturbations in analogy with the plane fluid films with free boundaries.
doi_str_mv 10.1063/5.0154444
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0154444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2835642406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-cd046f0754c00887513e9e10b709b8fc78faf699036f2e6f622283e832c3e8673</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsH3yDgSWHrJNlNskcRq0LFi55DNptIynazJtlD396U9uwc_vkPHzPwIXRLYEWAs8dmBaSpy5yhBQHZVoJzfn7oAirOGblEVyltAYC1lC_Q-kNHPf6E0WM_pqw7P_i8Lx2HbtDZ4j6GabA54TSnyY697XEYscbGRzMPOmIX9c5eowunh2RvTnuJvtcvX89v1ebz9f35aVMZKkWuTA81dyCa2gBIKRrCbGsJdALaTjojpNOOty0w7qjljlNKJbOSUVOSC7ZEd8e7Uwy_s01ZbcMcx_JSFbDhNa2LhSW6P1ImhpSidWqKfqfjXhFQB02qUSdNhX04ssn4rLMP4z_wH0zWZcY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2835642406</pqid></control><display><type>article</type><title>Marangoni instability in oblate droplets suspended on a circular frame</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Shishkin, M. A. ; Kolegov, K. S. ; Pikin, S. A. ; Ostrovskii, B. I. ; Pikina, E. S.</creator><creatorcontrib>Shishkin, M. A. ; Kolegov, K. S. ; Pikin, S. A. ; Ostrovskii, B. I. ; Pikina, E. S.</creatorcontrib><description>We study theoretically internal flows in a small oblate droplet suspended on the circular frame. Marangoni convection arises due to a vertical temperature gradient across the drop and is driven by the surface tension variations at the free drop interface. Using the analytical basis for the solutions of Stokes equation in coordinates of oblate spheroid, we have derived the linearly independent stationary solutions for Marangoni convection in terms of Stokes stream functions. The numerical simulations of the thermocapillary motion in the drops are used to study the onset of the stationary regime. Both analytical and numerical calculations predict the axially symmetric circulatory convection motion in the drop, the dynamics of which is determined by the magnitude of the temperature gradient across the drop. The analytical solutions for the critical temperature distribution and velocity fields are obtained for the large temperature gradients across the oblate drop. These solutions reveal the lateral separation of the critical and stationary motions within the drops. The critical vortices are localized near the central part of a drop, while the intensive stationary flow is located closer to its butt end. A crossover to the limit of the plane film is studied within the formalism of the stream functions by reducing the droplet ellipticity ratio to zero value. The initial stationary regime for the strongly oblate drops becomes unstable relative to the many-vortex perturbations in analogy with the plane fluid films with free boundaries.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0154444</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Convection cooling ; Critical temperature ; Droplets ; Ellipticity ; Exact solutions ; Fluid dynamics ; Fluid films ; Fluid flow ; Free boundaries ; Internal flow ; Marangoni convection ; Numerical prediction ; Perturbation ; Physics ; Stream functions (fluids) ; Surface tension ; Temperature distribution ; Velocity distribution</subject><ispartof>Physics of fluids (1994), 2023-07, Vol.35 (7)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-cd046f0754c00887513e9e10b709b8fc78faf699036f2e6f622283e832c3e8673</cites><orcidid>0000-0002-1243-5285 ; 0000-0003-1992-4468 ; 0000-0002-9742-1308 ; 0000-0002-3359-754X ; 0000-0002-3496-6116</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Shishkin, M. A.</creatorcontrib><creatorcontrib>Kolegov, K. S.</creatorcontrib><creatorcontrib>Pikin, S. A.</creatorcontrib><creatorcontrib>Ostrovskii, B. I.</creatorcontrib><creatorcontrib>Pikina, E. S.</creatorcontrib><title>Marangoni instability in oblate droplets suspended on a circular frame</title><title>Physics of fluids (1994)</title><description>We study theoretically internal flows in a small oblate droplet suspended on the circular frame. Marangoni convection arises due to a vertical temperature gradient across the drop and is driven by the surface tension variations at the free drop interface. Using the analytical basis for the solutions of Stokes equation in coordinates of oblate spheroid, we have derived the linearly independent stationary solutions for Marangoni convection in terms of Stokes stream functions. The numerical simulations of the thermocapillary motion in the drops are used to study the onset of the stationary regime. Both analytical and numerical calculations predict the axially symmetric circulatory convection motion in the drop, the dynamics of which is determined by the magnitude of the temperature gradient across the drop. The analytical solutions for the critical temperature distribution and velocity fields are obtained for the large temperature gradients across the oblate drop. These solutions reveal the lateral separation of the critical and stationary motions within the drops. The critical vortices are localized near the central part of a drop, while the intensive stationary flow is located closer to its butt end. A crossover to the limit of the plane film is studied within the formalism of the stream functions by reducing the droplet ellipticity ratio to zero value. The initial stationary regime for the strongly oblate drops becomes unstable relative to the many-vortex perturbations in analogy with the plane fluid films with free boundaries.</description><subject>Convection cooling</subject><subject>Critical temperature</subject><subject>Droplets</subject><subject>Ellipticity</subject><subject>Exact solutions</subject><subject>Fluid dynamics</subject><subject>Fluid films</subject><subject>Fluid flow</subject><subject>Free boundaries</subject><subject>Internal flow</subject><subject>Marangoni convection</subject><subject>Numerical prediction</subject><subject>Perturbation</subject><subject>Physics</subject><subject>Stream functions (fluids)</subject><subject>Surface tension</subject><subject>Temperature distribution</subject><subject>Velocity distribution</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsH3yDgSWHrJNlNskcRq0LFi55DNptIynazJtlD396U9uwc_vkPHzPwIXRLYEWAs8dmBaSpy5yhBQHZVoJzfn7oAirOGblEVyltAYC1lC_Q-kNHPf6E0WM_pqw7P_i8Lx2HbtDZ4j6GabA54TSnyY697XEYscbGRzMPOmIX9c5eowunh2RvTnuJvtcvX89v1ebz9f35aVMZKkWuTA81dyCa2gBIKRrCbGsJdALaTjojpNOOty0w7qjljlNKJbOSUVOSC7ZEd8e7Uwy_s01ZbcMcx_JSFbDhNa2LhSW6P1ImhpSidWqKfqfjXhFQB02qUSdNhX04ssn4rLMP4z_wH0zWZcY</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Shishkin, M. A.</creator><creator>Kolegov, K. S.</creator><creator>Pikin, S. A.</creator><creator>Ostrovskii, B. I.</creator><creator>Pikina, E. S.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1243-5285</orcidid><orcidid>https://orcid.org/0000-0003-1992-4468</orcidid><orcidid>https://orcid.org/0000-0002-9742-1308</orcidid><orcidid>https://orcid.org/0000-0002-3359-754X</orcidid><orcidid>https://orcid.org/0000-0002-3496-6116</orcidid></search><sort><creationdate>202307</creationdate><title>Marangoni instability in oblate droplets suspended on a circular frame</title><author>Shishkin, M. A. ; Kolegov, K. S. ; Pikin, S. A. ; Ostrovskii, B. I. ; Pikina, E. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-cd046f0754c00887513e9e10b709b8fc78faf699036f2e6f622283e832c3e8673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Convection cooling</topic><topic>Critical temperature</topic><topic>Droplets</topic><topic>Ellipticity</topic><topic>Exact solutions</topic><topic>Fluid dynamics</topic><topic>Fluid films</topic><topic>Fluid flow</topic><topic>Free boundaries</topic><topic>Internal flow</topic><topic>Marangoni convection</topic><topic>Numerical prediction</topic><topic>Perturbation</topic><topic>Physics</topic><topic>Stream functions (fluids)</topic><topic>Surface tension</topic><topic>Temperature distribution</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shishkin, M. A.</creatorcontrib><creatorcontrib>Kolegov, K. S.</creatorcontrib><creatorcontrib>Pikin, S. A.</creatorcontrib><creatorcontrib>Ostrovskii, B. I.</creatorcontrib><creatorcontrib>Pikina, E. S.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shishkin, M. A.</au><au>Kolegov, K. S.</au><au>Pikin, S. A.</au><au>Ostrovskii, B. I.</au><au>Pikina, E. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marangoni instability in oblate droplets suspended on a circular frame</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2023-07</date><risdate>2023</risdate><volume>35</volume><issue>7</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>We study theoretically internal flows in a small oblate droplet suspended on the circular frame. Marangoni convection arises due to a vertical temperature gradient across the drop and is driven by the surface tension variations at the free drop interface. Using the analytical basis for the solutions of Stokes equation in coordinates of oblate spheroid, we have derived the linearly independent stationary solutions for Marangoni convection in terms of Stokes stream functions. The numerical simulations of the thermocapillary motion in the drops are used to study the onset of the stationary regime. Both analytical and numerical calculations predict the axially symmetric circulatory convection motion in the drop, the dynamics of which is determined by the magnitude of the temperature gradient across the drop. The analytical solutions for the critical temperature distribution and velocity fields are obtained for the large temperature gradients across the oblate drop. These solutions reveal the lateral separation of the critical and stationary motions within the drops. The critical vortices are localized near the central part of a drop, while the intensive stationary flow is located closer to its butt end. A crossover to the limit of the plane film is studied within the formalism of the stream functions by reducing the droplet ellipticity ratio to zero value. The initial stationary regime for the strongly oblate drops becomes unstable relative to the many-vortex perturbations in analogy with the plane fluid films with free boundaries.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0154444</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-1243-5285</orcidid><orcidid>https://orcid.org/0000-0003-1992-4468</orcidid><orcidid>https://orcid.org/0000-0002-9742-1308</orcidid><orcidid>https://orcid.org/0000-0002-3359-754X</orcidid><orcidid>https://orcid.org/0000-0002-3496-6116</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2023-07, Vol.35 (7)
issn 1070-6631
1089-7666
language eng
recordid cdi_scitation_primary_10_1063_5_0154444
source AIP Journals Complete; Alma/SFX Local Collection
subjects Convection cooling
Critical temperature
Droplets
Ellipticity
Exact solutions
Fluid dynamics
Fluid films
Fluid flow
Free boundaries
Internal flow
Marangoni convection
Numerical prediction
Perturbation
Physics
Stream functions (fluids)
Surface tension
Temperature distribution
Velocity distribution
title Marangoni instability in oblate droplets suspended on a circular frame
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A22%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marangoni%20instability%20in%20oblate%20droplets%20suspended%20on%20a%20circular%20frame&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Shishkin,%20M.%20A.&rft.date=2023-07&rft.volume=35&rft.issue=7&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0154444&rft_dat=%3Cproquest_scita%3E2835642406%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2835642406&rft_id=info:pmid/&rfr_iscdi=true