Exploring nonlinear dynamics and network structures in Kuramoto systems using machine learning approaches
Recent advances in machine learning (ML) have facilitated its application to a wide range of systems, from complex to quantum. Reservoir computing algorithms have proven particularly effective for studying nonlinear dynamical systems that exhibit collective behaviors, such as synchronizations and ch...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2023-07, Vol.33 (7) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Chaos (Woodbury, N.Y.) |
container_volume | 33 |
creator | Song, Je Ung Choi, Kwangjong Oh, Soo Min Kahng, B. |
description | Recent advances in machine learning (ML) have facilitated its application to a wide range of systems, from complex to quantum. Reservoir computing algorithms have proven particularly effective for studying nonlinear dynamical systems that exhibit collective behaviors, such as synchronizations and chaotic phenomena, some of which still remain unclear. Here, we apply ML approaches to the Kuramoto model to address several intriguing problems, including identifying the transition point and criticality of a hybrid synchronization transition, predicting future chaotic behaviors, and understanding network structures from chaotic patterns. Our proposed method also has further implications, such as inferring the structure of neural networks from electroencephalogram signals. This study, finally, highlights the potential of ML approaches for advancing our understanding of complex systems. |
doi_str_mv | 10.1063/5.0153229 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0153229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2841404541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-6832f57ff6059627ee8424b3faa477b9ae81ce0d7fbb1dd1072bda2031e6dc773</originalsourceid><addsrcrecordid>eNp9kE1P3DAQhq0KVGDbQ_8AssSlIIX629kjQsuHQOqlPUeO47SGxF48juj-e5zuwoEDc5nR6NEzoxehb5ScU6L4D3lOqOSMLT-hQ0rqZaVVzfbmWYqKSkIO0BHAAyGEMi4_owOuRa1KHSK_-rceYvLhDw4xDD44k3C3CWb0FrAJHQ4uP8f0iCGnyeYpOcA-4LspmTHmiGED2Y2AJ5gdo7F_iwMPRRPmhVmvUyxLB1_Qfm8GcF93fYF-X61-Xd5U9z-vby8v7ivLa54rVXPWS933isilYtq5WjDR8t4YoXW7NK6m1pFO921Lu44SzdrOMMKpU53Vmi_Q9623HH6aHORm9GDdMJjg4gQNqwUVREhBC3ryDn2IUwrlu_8UVUILVajTLWVTBEiub9bJjyZtGkqaOf9GNrv8C3u8M07t6Lo38jXwApxtAbA-m-xj-MD2AvUmjnc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2841164746</pqid></control><display><type>article</type><title>Exploring nonlinear dynamics and network structures in Kuramoto systems using machine learning approaches</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Song, Je Ung ; Choi, Kwangjong ; Oh, Soo Min ; Kahng, B.</creator><creatorcontrib>Song, Je Ung ; Choi, Kwangjong ; Oh, Soo Min ; Kahng, B.</creatorcontrib><description>Recent advances in machine learning (ML) have facilitated its application to a wide range of systems, from complex to quantum. Reservoir computing algorithms have proven particularly effective for studying nonlinear dynamical systems that exhibit collective behaviors, such as synchronizations and chaotic phenomena, some of which still remain unclear. Here, we apply ML approaches to the Kuramoto model to address several intriguing problems, including identifying the transition point and criticality of a hybrid synchronization transition, predicting future chaotic behaviors, and understanding network structures from chaotic patterns. Our proposed method also has further implications, such as inferring the structure of neural networks from electroencephalogram signals. This study, finally, highlights the potential of ML approaches for advancing our understanding of complex systems.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/5.0153229</identifier><identifier>PMID: 37486666</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Algorithms ; Complex systems ; Dynamical systems ; Machine learning ; Neural networks ; Nonlinear dynamics ; Nonlinear systems ; Synchronism ; System effectiveness ; Transition points</subject><ispartof>Chaos (Woodbury, N.Y.), 2023-07, Vol.33 (7)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-6832f57ff6059627ee8424b3faa477b9ae81ce0d7fbb1dd1072bda2031e6dc773</citedby><cites>FETCH-LOGICAL-c383t-6832f57ff6059627ee8424b3faa477b9ae81ce0d7fbb1dd1072bda2031e6dc773</cites><orcidid>0000-0002-5172-6181 ; 0000-0003-2186-1232 ; 0000-0002-9099-6395</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37486666$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Je Ung</creatorcontrib><creatorcontrib>Choi, Kwangjong</creatorcontrib><creatorcontrib>Oh, Soo Min</creatorcontrib><creatorcontrib>Kahng, B.</creatorcontrib><title>Exploring nonlinear dynamics and network structures in Kuramoto systems using machine learning approaches</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>Recent advances in machine learning (ML) have facilitated its application to a wide range of systems, from complex to quantum. Reservoir computing algorithms have proven particularly effective for studying nonlinear dynamical systems that exhibit collective behaviors, such as synchronizations and chaotic phenomena, some of which still remain unclear. Here, we apply ML approaches to the Kuramoto model to address several intriguing problems, including identifying the transition point and criticality of a hybrid synchronization transition, predicting future chaotic behaviors, and understanding network structures from chaotic patterns. Our proposed method also has further implications, such as inferring the structure of neural networks from electroencephalogram signals. This study, finally, highlights the potential of ML approaches for advancing our understanding of complex systems.</description><subject>Algorithms</subject><subject>Complex systems</subject><subject>Dynamical systems</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Synchronism</subject><subject>System effectiveness</subject><subject>Transition points</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1P3DAQhq0KVGDbQ_8AssSlIIX629kjQsuHQOqlPUeO47SGxF48juj-e5zuwoEDc5nR6NEzoxehb5ScU6L4D3lOqOSMLT-hQ0rqZaVVzfbmWYqKSkIO0BHAAyGEMi4_owOuRa1KHSK_-rceYvLhDw4xDD44k3C3CWb0FrAJHQ4uP8f0iCGnyeYpOcA-4LspmTHmiGED2Y2AJ5gdo7F_iwMPRRPmhVmvUyxLB1_Qfm8GcF93fYF-X61-Xd5U9z-vby8v7ivLa54rVXPWS933isilYtq5WjDR8t4YoXW7NK6m1pFO921Lu44SzdrOMMKpU53Vmi_Q9623HH6aHORm9GDdMJjg4gQNqwUVREhBC3ryDn2IUwrlu_8UVUILVajTLWVTBEiub9bJjyZtGkqaOf9GNrv8C3u8M07t6Lo38jXwApxtAbA-m-xj-MD2AvUmjnc</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Song, Je Ung</creator><creator>Choi, Kwangjong</creator><creator>Oh, Soo Min</creator><creator>Kahng, B.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5172-6181</orcidid><orcidid>https://orcid.org/0000-0003-2186-1232</orcidid><orcidid>https://orcid.org/0000-0002-9099-6395</orcidid></search><sort><creationdate>202307</creationdate><title>Exploring nonlinear dynamics and network structures in Kuramoto systems using machine learning approaches</title><author>Song, Je Ung ; Choi, Kwangjong ; Oh, Soo Min ; Kahng, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-6832f57ff6059627ee8424b3faa477b9ae81ce0d7fbb1dd1072bda2031e6dc773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Complex systems</topic><topic>Dynamical systems</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Synchronism</topic><topic>System effectiveness</topic><topic>Transition points</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Je Ung</creatorcontrib><creatorcontrib>Choi, Kwangjong</creatorcontrib><creatorcontrib>Oh, Soo Min</creatorcontrib><creatorcontrib>Kahng, B.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Je Ung</au><au>Choi, Kwangjong</au><au>Oh, Soo Min</au><au>Kahng, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring nonlinear dynamics and network structures in Kuramoto systems using machine learning approaches</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2023-07</date><risdate>2023</risdate><volume>33</volume><issue>7</issue><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>Recent advances in machine learning (ML) have facilitated its application to a wide range of systems, from complex to quantum. Reservoir computing algorithms have proven particularly effective for studying nonlinear dynamical systems that exhibit collective behaviors, such as synchronizations and chaotic phenomena, some of which still remain unclear. Here, we apply ML approaches to the Kuramoto model to address several intriguing problems, including identifying the transition point and criticality of a hybrid synchronization transition, predicting future chaotic behaviors, and understanding network structures from chaotic patterns. Our proposed method also has further implications, such as inferring the structure of neural networks from electroencephalogram signals. This study, finally, highlights the potential of ML approaches for advancing our understanding of complex systems.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>37486666</pmid><doi>10.1063/5.0153229</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5172-6181</orcidid><orcidid>https://orcid.org/0000-0003-2186-1232</orcidid><orcidid>https://orcid.org/0000-0002-9099-6395</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos (Woodbury, N.Y.), 2023-07, Vol.33 (7) |
issn | 1054-1500 1089-7682 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0153229 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Algorithms Complex systems Dynamical systems Machine learning Neural networks Nonlinear dynamics Nonlinear systems Synchronism System effectiveness Transition points |
title | Exploring nonlinear dynamics and network structures in Kuramoto systems using machine learning approaches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20nonlinear%20dynamics%20and%20network%20structures%20in%20Kuramoto%20systems%20using%20machine%20learning%20approaches&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Song,%20Je%20Ung&rft.date=2023-07&rft.volume=33&rft.issue=7&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/5.0153229&rft_dat=%3Cproquest_scita%3E2841404541%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2841164746&rft_id=info:pmid/37486666&rfr_iscdi=true |