Exploring nonlinear dynamics and network structures in Kuramoto systems using machine learning approaches

Recent advances in machine learning (ML) have facilitated its application to a wide range of systems, from complex to quantum. Reservoir computing algorithms have proven particularly effective for studying nonlinear dynamical systems that exhibit collective behaviors, such as synchronizations and ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2023-07, Vol.33 (7)
Hauptverfasser: Song, Je Ung, Choi, Kwangjong, Oh, Soo Min, Kahng, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Chaos (Woodbury, N.Y.)
container_volume 33
creator Song, Je Ung
Choi, Kwangjong
Oh, Soo Min
Kahng, B.
description Recent advances in machine learning (ML) have facilitated its application to a wide range of systems, from complex to quantum. Reservoir computing algorithms have proven particularly effective for studying nonlinear dynamical systems that exhibit collective behaviors, such as synchronizations and chaotic phenomena, some of which still remain unclear. Here, we apply ML approaches to the Kuramoto model to address several intriguing problems, including identifying the transition point and criticality of a hybrid synchronization transition, predicting future chaotic behaviors, and understanding network structures from chaotic patterns. Our proposed method also has further implications, such as inferring the structure of neural networks from electroencephalogram signals. This study, finally, highlights the potential of ML approaches for advancing our understanding of complex systems.
doi_str_mv 10.1063/5.0153229
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0153229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2841404541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-6832f57ff6059627ee8424b3faa477b9ae81ce0d7fbb1dd1072bda2031e6dc773</originalsourceid><addsrcrecordid>eNp9kE1P3DAQhq0KVGDbQ_8AssSlIIX629kjQsuHQOqlPUeO47SGxF48juj-e5zuwoEDc5nR6NEzoxehb5ScU6L4D3lOqOSMLT-hQ0rqZaVVzfbmWYqKSkIO0BHAAyGEMi4_owOuRa1KHSK_-rceYvLhDw4xDD44k3C3CWb0FrAJHQ4uP8f0iCGnyeYpOcA-4LspmTHmiGED2Y2AJ5gdo7F_iwMPRRPmhVmvUyxLB1_Qfm8GcF93fYF-X61-Xd5U9z-vby8v7ivLa54rVXPWS933isilYtq5WjDR8t4YoXW7NK6m1pFO921Lu44SzdrOMMKpU53Vmi_Q9623HH6aHORm9GDdMJjg4gQNqwUVREhBC3ryDn2IUwrlu_8UVUILVajTLWVTBEiub9bJjyZtGkqaOf9GNrv8C3u8M07t6Lo38jXwApxtAbA-m-xj-MD2AvUmjnc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2841164746</pqid></control><display><type>article</type><title>Exploring nonlinear dynamics and network structures in Kuramoto systems using machine learning approaches</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Song, Je Ung ; Choi, Kwangjong ; Oh, Soo Min ; Kahng, B.</creator><creatorcontrib>Song, Je Ung ; Choi, Kwangjong ; Oh, Soo Min ; Kahng, B.</creatorcontrib><description>Recent advances in machine learning (ML) have facilitated its application to a wide range of systems, from complex to quantum. Reservoir computing algorithms have proven particularly effective for studying nonlinear dynamical systems that exhibit collective behaviors, such as synchronizations and chaotic phenomena, some of which still remain unclear. Here, we apply ML approaches to the Kuramoto model to address several intriguing problems, including identifying the transition point and criticality of a hybrid synchronization transition, predicting future chaotic behaviors, and understanding network structures from chaotic patterns. Our proposed method also has further implications, such as inferring the structure of neural networks from electroencephalogram signals. This study, finally, highlights the potential of ML approaches for advancing our understanding of complex systems.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/5.0153229</identifier><identifier>PMID: 37486666</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Algorithms ; Complex systems ; Dynamical systems ; Machine learning ; Neural networks ; Nonlinear dynamics ; Nonlinear systems ; Synchronism ; System effectiveness ; Transition points</subject><ispartof>Chaos (Woodbury, N.Y.), 2023-07, Vol.33 (7)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-6832f57ff6059627ee8424b3faa477b9ae81ce0d7fbb1dd1072bda2031e6dc773</citedby><cites>FETCH-LOGICAL-c383t-6832f57ff6059627ee8424b3faa477b9ae81ce0d7fbb1dd1072bda2031e6dc773</cites><orcidid>0000-0002-5172-6181 ; 0000-0003-2186-1232 ; 0000-0002-9099-6395</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37486666$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Je Ung</creatorcontrib><creatorcontrib>Choi, Kwangjong</creatorcontrib><creatorcontrib>Oh, Soo Min</creatorcontrib><creatorcontrib>Kahng, B.</creatorcontrib><title>Exploring nonlinear dynamics and network structures in Kuramoto systems using machine learning approaches</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>Recent advances in machine learning (ML) have facilitated its application to a wide range of systems, from complex to quantum. Reservoir computing algorithms have proven particularly effective for studying nonlinear dynamical systems that exhibit collective behaviors, such as synchronizations and chaotic phenomena, some of which still remain unclear. Here, we apply ML approaches to the Kuramoto model to address several intriguing problems, including identifying the transition point and criticality of a hybrid synchronization transition, predicting future chaotic behaviors, and understanding network structures from chaotic patterns. Our proposed method also has further implications, such as inferring the structure of neural networks from electroencephalogram signals. This study, finally, highlights the potential of ML approaches for advancing our understanding of complex systems.</description><subject>Algorithms</subject><subject>Complex systems</subject><subject>Dynamical systems</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Synchronism</subject><subject>System effectiveness</subject><subject>Transition points</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1P3DAQhq0KVGDbQ_8AssSlIIX629kjQsuHQOqlPUeO47SGxF48juj-e5zuwoEDc5nR6NEzoxehb5ScU6L4D3lOqOSMLT-hQ0rqZaVVzfbmWYqKSkIO0BHAAyGEMi4_owOuRa1KHSK_-rceYvLhDw4xDD44k3C3CWb0FrAJHQ4uP8f0iCGnyeYpOcA-4LspmTHmiGED2Y2AJ5gdo7F_iwMPRRPmhVmvUyxLB1_Qfm8GcF93fYF-X61-Xd5U9z-vby8v7ivLa54rVXPWS933isilYtq5WjDR8t4YoXW7NK6m1pFO921Lu44SzdrOMMKpU53Vmi_Q9623HH6aHORm9GDdMJjg4gQNqwUVREhBC3ryDn2IUwrlu_8UVUILVajTLWVTBEiub9bJjyZtGkqaOf9GNrv8C3u8M07t6Lo38jXwApxtAbA-m-xj-MD2AvUmjnc</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Song, Je Ung</creator><creator>Choi, Kwangjong</creator><creator>Oh, Soo Min</creator><creator>Kahng, B.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5172-6181</orcidid><orcidid>https://orcid.org/0000-0003-2186-1232</orcidid><orcidid>https://orcid.org/0000-0002-9099-6395</orcidid></search><sort><creationdate>202307</creationdate><title>Exploring nonlinear dynamics and network structures in Kuramoto systems using machine learning approaches</title><author>Song, Je Ung ; Choi, Kwangjong ; Oh, Soo Min ; Kahng, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-6832f57ff6059627ee8424b3faa477b9ae81ce0d7fbb1dd1072bda2031e6dc773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Complex systems</topic><topic>Dynamical systems</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Synchronism</topic><topic>System effectiveness</topic><topic>Transition points</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Je Ung</creatorcontrib><creatorcontrib>Choi, Kwangjong</creatorcontrib><creatorcontrib>Oh, Soo Min</creatorcontrib><creatorcontrib>Kahng, B.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Je Ung</au><au>Choi, Kwangjong</au><au>Oh, Soo Min</au><au>Kahng, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring nonlinear dynamics and network structures in Kuramoto systems using machine learning approaches</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2023-07</date><risdate>2023</risdate><volume>33</volume><issue>7</issue><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>Recent advances in machine learning (ML) have facilitated its application to a wide range of systems, from complex to quantum. Reservoir computing algorithms have proven particularly effective for studying nonlinear dynamical systems that exhibit collective behaviors, such as synchronizations and chaotic phenomena, some of which still remain unclear. Here, we apply ML approaches to the Kuramoto model to address several intriguing problems, including identifying the transition point and criticality of a hybrid synchronization transition, predicting future chaotic behaviors, and understanding network structures from chaotic patterns. Our proposed method also has further implications, such as inferring the structure of neural networks from electroencephalogram signals. This study, finally, highlights the potential of ML approaches for advancing our understanding of complex systems.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>37486666</pmid><doi>10.1063/5.0153229</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5172-6181</orcidid><orcidid>https://orcid.org/0000-0003-2186-1232</orcidid><orcidid>https://orcid.org/0000-0002-9099-6395</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2023-07, Vol.33 (7)
issn 1054-1500
1089-7682
language eng
recordid cdi_scitation_primary_10_1063_5_0153229
source AIP Journals Complete; Alma/SFX Local Collection
subjects Algorithms
Complex systems
Dynamical systems
Machine learning
Neural networks
Nonlinear dynamics
Nonlinear systems
Synchronism
System effectiveness
Transition points
title Exploring nonlinear dynamics and network structures in Kuramoto systems using machine learning approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20nonlinear%20dynamics%20and%20network%20structures%20in%20Kuramoto%20systems%20using%20machine%20learning%20approaches&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Song,%20Je%20Ung&rft.date=2023-07&rft.volume=33&rft.issue=7&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/5.0153229&rft_dat=%3Cproquest_scita%3E2841404541%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2841164746&rft_id=info:pmid/37486666&rfr_iscdi=true