EUV debris mitigation using magnetic nulls
Next generation EUV sources for photolithography use light produced by laser-produced plasmas (LPP) from ablated tin droplets. A major challenge for extending the lifetime of these devices is mitigating damage caused by deposition of tin debris on the sensitive collection mirror. Especially difficul...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2023-07, Vol.123 (4) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 123 |
creator | Israeli, B. Y. Smiet, C. B. Simeni Simeni, M. Diallo, A. |
description | Next generation EUV sources for photolithography use light produced by laser-produced plasmas (LPP) from ablated tin droplets. A major challenge for extending the lifetime of these devices is mitigating damage caused by deposition of tin debris on the sensitive collection mirror. Especially difficult to stop are high energy (up to 10 keV) highly charged tin ions created in the plasma. Existing solutions include the use of stopping gas, electric fields, and magnetic fields. One common configuration consists of a magnetic field perpendicular to the EUV emission direction, but such a system can result in ion populations that are trapped rather than removed. We investigate a previously unconsidered mitigation geometry consisting of a magnetic null by performing full-orbit integration of the ion trajectories in an EUV system with realistic dimensions and optimize the coil locations for the null configuration. The magnetic null prevents a fraction of ions from hitting the mirror comparable to that of the perpendicular field, but does not trap any ions due to the chaotic nature of ion trajectories that pass close to the null. This technology can potentially improve LPP-based EUV photolithography system efficiency and lifetime and may allow for a different, more efficient formulation of buffer gas. |
doi_str_mv | 10.1063/5.0152083 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0152083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2842644087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-af312e53e86272810583528d7e286129e7f573c3a69e58764968166e3c927cc43</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX-w6MnC1kwmn0cp9QMKXqzXsKbZmtLu1iR78N936_bsaRh4eGd4CbkFOgUq8VFMKQhGNZ6REVClSgTQ52REKcVSGgGX5CqlTb8Khjgik_nys1j5rxhSsQs5rKsc2qboUmjWxa5aNz4HVzTddpuuyUVdbZO_Oc0xWT7PP2av5eL95W32tCgdAs9lVSMwL9BryRTTQIVGwfRKeaYlMONVLRQ6rKTxQivJjdQgpUdnmHKO45jcDbltysEmF7J3365tGu-yBWMk47pH9wPax_an8ynbTdvFpv_LMs2Z5Jxq1auHQbnYphR9bfcx7Kr4a4HaY19W2FNfvZ0M9njxr4V_8AGWDmXc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842644087</pqid></control><display><type>article</type><title>EUV debris mitigation using magnetic nulls</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Israeli, B. Y. ; Smiet, C. B. ; Simeni Simeni, M. ; Diallo, A.</creator><creatorcontrib>Israeli, B. Y. ; Smiet, C. B. ; Simeni Simeni, M. ; Diallo, A. ; Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><description>Next generation EUV sources for photolithography use light produced by laser-produced plasmas (LPP) from ablated tin droplets. A major challenge for extending the lifetime of these devices is mitigating damage caused by deposition of tin debris on the sensitive collection mirror. Especially difficult to stop are high energy (up to 10 keV) highly charged tin ions created in the plasma. Existing solutions include the use of stopping gas, electric fields, and magnetic fields. One common configuration consists of a magnetic field perpendicular to the EUV emission direction, but such a system can result in ion populations that are trapped rather than removed. We investigate a previously unconsidered mitigation geometry consisting of a magnetic null by performing full-orbit integration of the ion trajectories in an EUV system with realistic dimensions and optimize the coil locations for the null configuration. The magnetic null prevents a fraction of ions from hitting the mirror comparable to that of the perpendicular field, but does not trap any ions due to the chaotic nature of ion trajectories that pass close to the null. This technology can potentially improve LPP-based EUV photolithography system efficiency and lifetime and may allow for a different, more efficient formulation of buffer gas.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0152083</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Ablation ; Applied physics ; Configurations ; Debris ; Electric fields ; electromagnetism ; extreme ultraviolet lithography ; Ion trajectories ; Magnetic fields ; magnetic mirrors ; Photolithography ; plasma applications ; plasma production ; Service life assessment</subject><ispartof>Applied physics letters, 2023-07, Vol.123 (4)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-af312e53e86272810583528d7e286129e7f573c3a69e58764968166e3c927cc43</cites><orcidid>0000-0002-7803-7685 ; 0000-0002-2241-5739 ; 0000-0002-0706-060X ; 0000-0002-1815-2876 ; 0000000218152876 ; 0000000278037685 ; 0000000222415739 ; 000000020706060X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0152083$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1996248$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Israeli, B. Y.</creatorcontrib><creatorcontrib>Smiet, C. B.</creatorcontrib><creatorcontrib>Simeni Simeni, M.</creatorcontrib><creatorcontrib>Diallo, A.</creatorcontrib><creatorcontrib>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><title>EUV debris mitigation using magnetic nulls</title><title>Applied physics letters</title><description>Next generation EUV sources for photolithography use light produced by laser-produced plasmas (LPP) from ablated tin droplets. A major challenge for extending the lifetime of these devices is mitigating damage caused by deposition of tin debris on the sensitive collection mirror. Especially difficult to stop are high energy (up to 10 keV) highly charged tin ions created in the plasma. Existing solutions include the use of stopping gas, electric fields, and magnetic fields. One common configuration consists of a magnetic field perpendicular to the EUV emission direction, but such a system can result in ion populations that are trapped rather than removed. We investigate a previously unconsidered mitigation geometry consisting of a magnetic null by performing full-orbit integration of the ion trajectories in an EUV system with realistic dimensions and optimize the coil locations for the null configuration. The magnetic null prevents a fraction of ions from hitting the mirror comparable to that of the perpendicular field, but does not trap any ions due to the chaotic nature of ion trajectories that pass close to the null. This technology can potentially improve LPP-based EUV photolithography system efficiency and lifetime and may allow for a different, more efficient formulation of buffer gas.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Ablation</subject><subject>Applied physics</subject><subject>Configurations</subject><subject>Debris</subject><subject>Electric fields</subject><subject>electromagnetism</subject><subject>extreme ultraviolet lithography</subject><subject>Ion trajectories</subject><subject>Magnetic fields</subject><subject>magnetic mirrors</subject><subject>Photolithography</subject><subject>plasma applications</subject><subject>plasma production</subject><subject>Service life assessment</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX-w6MnC1kwmn0cp9QMKXqzXsKbZmtLu1iR78N936_bsaRh4eGd4CbkFOgUq8VFMKQhGNZ6REVClSgTQ52REKcVSGgGX5CqlTb8Khjgik_nys1j5rxhSsQs5rKsc2qboUmjWxa5aNz4HVzTddpuuyUVdbZO_Oc0xWT7PP2av5eL95W32tCgdAs9lVSMwL9BryRTTQIVGwfRKeaYlMONVLRQ6rKTxQivJjdQgpUdnmHKO45jcDbltysEmF7J3365tGu-yBWMk47pH9wPax_an8ynbTdvFpv_LMs2Z5Jxq1auHQbnYphR9bfcx7Kr4a4HaY19W2FNfvZ0M9njxr4V_8AGWDmXc</recordid><startdate>20230724</startdate><enddate>20230724</enddate><creator>Israeli, B. Y.</creator><creator>Smiet, C. B.</creator><creator>Simeni Simeni, M.</creator><creator>Diallo, A.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7803-7685</orcidid><orcidid>https://orcid.org/0000-0002-2241-5739</orcidid><orcidid>https://orcid.org/0000-0002-0706-060X</orcidid><orcidid>https://orcid.org/0000-0002-1815-2876</orcidid><orcidid>https://orcid.org/0000000218152876</orcidid><orcidid>https://orcid.org/0000000278037685</orcidid><orcidid>https://orcid.org/0000000222415739</orcidid><orcidid>https://orcid.org/000000020706060X</orcidid></search><sort><creationdate>20230724</creationdate><title>EUV debris mitigation using magnetic nulls</title><author>Israeli, B. Y. ; Smiet, C. B. ; Simeni Simeni, M. ; Diallo, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-af312e53e86272810583528d7e286129e7f573c3a69e58764968166e3c927cc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Ablation</topic><topic>Applied physics</topic><topic>Configurations</topic><topic>Debris</topic><topic>Electric fields</topic><topic>electromagnetism</topic><topic>extreme ultraviolet lithography</topic><topic>Ion trajectories</topic><topic>Magnetic fields</topic><topic>magnetic mirrors</topic><topic>Photolithography</topic><topic>plasma applications</topic><topic>plasma production</topic><topic>Service life assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Israeli, B. Y.</creatorcontrib><creatorcontrib>Smiet, C. B.</creatorcontrib><creatorcontrib>Simeni Simeni, M.</creatorcontrib><creatorcontrib>Diallo, A.</creatorcontrib><creatorcontrib>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Israeli, B. Y.</au><au>Smiet, C. B.</au><au>Simeni Simeni, M.</au><au>Diallo, A.</au><aucorp>Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EUV debris mitigation using magnetic nulls</atitle><jtitle>Applied physics letters</jtitle><date>2023-07-24</date><risdate>2023</risdate><volume>123</volume><issue>4</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Next generation EUV sources for photolithography use light produced by laser-produced plasmas (LPP) from ablated tin droplets. A major challenge for extending the lifetime of these devices is mitigating damage caused by deposition of tin debris on the sensitive collection mirror. Especially difficult to stop are high energy (up to 10 keV) highly charged tin ions created in the plasma. Existing solutions include the use of stopping gas, electric fields, and magnetic fields. One common configuration consists of a magnetic field perpendicular to the EUV emission direction, but such a system can result in ion populations that are trapped rather than removed. We investigate a previously unconsidered mitigation geometry consisting of a magnetic null by performing full-orbit integration of the ion trajectories in an EUV system with realistic dimensions and optimize the coil locations for the null configuration. The magnetic null prevents a fraction of ions from hitting the mirror comparable to that of the perpendicular field, but does not trap any ions due to the chaotic nature of ion trajectories that pass close to the null. This technology can potentially improve LPP-based EUV photolithography system efficiency and lifetime and may allow for a different, more efficient formulation of buffer gas.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0152083</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7803-7685</orcidid><orcidid>https://orcid.org/0000-0002-2241-5739</orcidid><orcidid>https://orcid.org/0000-0002-0706-060X</orcidid><orcidid>https://orcid.org/0000-0002-1815-2876</orcidid><orcidid>https://orcid.org/0000000218152876</orcidid><orcidid>https://orcid.org/0000000278037685</orcidid><orcidid>https://orcid.org/0000000222415739</orcidid><orcidid>https://orcid.org/000000020706060X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2023-07, Vol.123 (4) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0152083 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY Ablation Applied physics Configurations Debris Electric fields electromagnetism extreme ultraviolet lithography Ion trajectories Magnetic fields magnetic mirrors Photolithography plasma applications plasma production Service life assessment |
title | EUV debris mitigation using magnetic nulls |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A44%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EUV%20debris%20mitigation%20using%20magnetic%20nulls&rft.jtitle=Applied%20physics%20letters&rft.au=Israeli,%20B.%20Y.&rft.aucorp=Princeton%20Plasma%20Physics%20Laboratory%20(PPPL),%20Princeton,%20NJ%20(United%20States)&rft.date=2023-07-24&rft.volume=123&rft.issue=4&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0152083&rft_dat=%3Cproquest_scita%3E2842644087%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2842644087&rft_id=info:pmid/&rfr_iscdi=true |