Ablation loading of barium ions into a surface-electrode trap
Trapped-ion quantum information processing may benefit from qubits encoded in isotopes that are practically available in only small quantities, e.g., due to low natural abundance or radioactivity. Laser ablation provides a method of controllably liberating neutral atoms or ions from low-volume targe...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2023-06, Vol.122 (26) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Trapped-ion quantum information processing may benefit from qubits encoded in isotopes that are practically available in only small quantities, e.g., due to low natural abundance or radioactivity. Laser ablation provides a method of controllably liberating neutral atoms or ions from low-volume targets, but energetic ablation products can be difficult to confine in the small ion-electrode distance, micron-scale microfabricated traps amenable to high-speed, high-fidelity manipulation of ion arrays. Here, we investigate ablation-based ion loading into surface-electrode traps of different sizes to test a model describing ion loading probability as a function of effective trap volume and other trap parameters. We characterize loading of ablated barium from a metallic source in two cryogenic surface-electrode traps with 730 and 50 μm ion-electrode distances. Our loading rate agrees with a predictive analytical model, providing insight for the confinement of limited-quantity species of interest for quantum computing, simulation, and sensing. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0149778 |