Grasp pose detection for control of an assistive robotic manipulator
Robotic Assistive Devices are increasingly on-demand as they improve the quality of life of people, especially with upper limb motor impairments. These assistive devices allow individuals to work independently and perform Activities of Daily Living (ADL) like picking and placing, objects that are im...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2788 |
creator | Pabbichetty, Nimisha Ramesh, Sai Aakash Shunmugavel, Sandhiya Satishkumaar, Shankrith Chokkalingam Mathivanan, Anbuselvi |
description | Robotic Assistive Devices are increasingly on-demand as they improve the quality of life of people, especially with upper limb motor impairments. These assistive devices allow individuals to work independently and perform Activities of Daily Living (ADL) like picking and placing, objects that are impossible to do without the other’s support. The proposed system involves the design of an assistive robotic arm system with 7-Degrees of Freedom (DOF), which could be mounted on the wheelchair. The arm is semi-autonomous and incorporates the user input while executing the planned trajectory. Visual servoing is made use of in tandem with a grasp pose detection algorithm to track and pick up the object of interest. The focus of this research work is to develop a more robust grasp pose detection algorithm using deep reinforcement learning that can detect grasp poses for unseen objects. All modules of the proposed system are designed and tested using the Gazebo simulator. |
doi_str_mv | 10.1063/5.0148637 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0148637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2841164653</sourcerecordid><originalsourceid>FETCH-LOGICAL-p962-5162a8f2a45778c778d1e6fe0693e5e8c0d5284c20d1811bcceb029cd6a368463</originalsourceid><addsrcrecordid>eNotkE9LAzEQxYMoWKsHv0HAm7A1kz-z2aNUW4WClx68hTSbhZR2syZZwW_vlvYwzOX33pt5hDwCWwBD8aIWDKRGUV-RGSgFVY2A12TGWCMrLsX3LbnLec8Yb-paz8jbOtk80CFmT1tfvCsh9rSLibrYlxQPNHbU9tTmHHIJv56muIslOHq0fRjGgy0x3ZObzh6yf7jsOdmu3rfLj2rztf5cvm6qoUFeKUBudcetVFO0m6YFj51n2AivvHasVVxLx1kLGmDnnN9NZ7oWrUAtUczJ09l2SPFn9LmYfRxTPyWaSQeAEpWYqOczlV0o9vSOGVI42vRngJlTSUaZS0niHw8GWG8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2841164653</pqid></control><display><type>conference_proceeding</type><title>Grasp pose detection for control of an assistive robotic manipulator</title><source>AIP Journals Complete</source><creator>Pabbichetty, Nimisha ; Ramesh, Sai Aakash ; Shunmugavel, Sandhiya ; Satishkumaar, Shankrith Chokkalingam ; Mathivanan, Anbuselvi</creator><contributor>D, Saravanakumar ; G, Sakthivel ; R, Jegadeeshwaran</contributor><creatorcontrib>Pabbichetty, Nimisha ; Ramesh, Sai Aakash ; Shunmugavel, Sandhiya ; Satishkumaar, Shankrith Chokkalingam ; Mathivanan, Anbuselvi ; D, Saravanakumar ; G, Sakthivel ; R, Jegadeeshwaran</creatorcontrib><description>Robotic Assistive Devices are increasingly on-demand as they improve the quality of life of people, especially with upper limb motor impairments. These assistive devices allow individuals to work independently and perform Activities of Daily Living (ADL) like picking and placing, objects that are impossible to do without the other’s support. The proposed system involves the design of an assistive robotic arm system with 7-Degrees of Freedom (DOF), which could be mounted on the wheelchair. The arm is semi-autonomous and incorporates the user input while executing the planned trajectory. Visual servoing is made use of in tandem with a grasp pose detection algorithm to track and pick up the object of interest. The focus of this research work is to develop a more robust grasp pose detection algorithm using deep reinforcement learning that can detect grasp poses for unseen objects. All modules of the proposed system are designed and tested using the Gazebo simulator.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0148637</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Activities of daily living ; Algorithms ; Degrees of freedom ; Machine learning ; Robot arms ; Robotics ; Visual control ; Wheelchairs</subject><ispartof>AIP conference proceedings, 2023, Vol.2788 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0148637$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4511,23929,23930,25139,27923,27924,76255</link.rule.ids></links><search><contributor>D, Saravanakumar</contributor><contributor>G, Sakthivel</contributor><contributor>R, Jegadeeshwaran</contributor><creatorcontrib>Pabbichetty, Nimisha</creatorcontrib><creatorcontrib>Ramesh, Sai Aakash</creatorcontrib><creatorcontrib>Shunmugavel, Sandhiya</creatorcontrib><creatorcontrib>Satishkumaar, Shankrith Chokkalingam</creatorcontrib><creatorcontrib>Mathivanan, Anbuselvi</creatorcontrib><title>Grasp pose detection for control of an assistive robotic manipulator</title><title>AIP conference proceedings</title><description>Robotic Assistive Devices are increasingly on-demand as they improve the quality of life of people, especially with upper limb motor impairments. These assistive devices allow individuals to work independently and perform Activities of Daily Living (ADL) like picking and placing, objects that are impossible to do without the other’s support. The proposed system involves the design of an assistive robotic arm system with 7-Degrees of Freedom (DOF), which could be mounted on the wheelchair. The arm is semi-autonomous and incorporates the user input while executing the planned trajectory. Visual servoing is made use of in tandem with a grasp pose detection algorithm to track and pick up the object of interest. The focus of this research work is to develop a more robust grasp pose detection algorithm using deep reinforcement learning that can detect grasp poses for unseen objects. All modules of the proposed system are designed and tested using the Gazebo simulator.</description><subject>Activities of daily living</subject><subject>Algorithms</subject><subject>Degrees of freedom</subject><subject>Machine learning</subject><subject>Robot arms</subject><subject>Robotics</subject><subject>Visual control</subject><subject>Wheelchairs</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE9LAzEQxYMoWKsHv0HAm7A1kz-z2aNUW4WClx68hTSbhZR2syZZwW_vlvYwzOX33pt5hDwCWwBD8aIWDKRGUV-RGSgFVY2A12TGWCMrLsX3LbnLec8Yb-paz8jbOtk80CFmT1tfvCsh9rSLibrYlxQPNHbU9tTmHHIJv56muIslOHq0fRjGgy0x3ZObzh6yf7jsOdmu3rfLj2rztf5cvm6qoUFeKUBudcetVFO0m6YFj51n2AivvHasVVxLx1kLGmDnnN9NZ7oWrUAtUczJ09l2SPFn9LmYfRxTPyWaSQeAEpWYqOczlV0o9vSOGVI42vRngJlTSUaZS0niHw8GWG8</recordid><startdate>20230724</startdate><enddate>20230724</enddate><creator>Pabbichetty, Nimisha</creator><creator>Ramesh, Sai Aakash</creator><creator>Shunmugavel, Sandhiya</creator><creator>Satishkumaar, Shankrith Chokkalingam</creator><creator>Mathivanan, Anbuselvi</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230724</creationdate><title>Grasp pose detection for control of an assistive robotic manipulator</title><author>Pabbichetty, Nimisha ; Ramesh, Sai Aakash ; Shunmugavel, Sandhiya ; Satishkumaar, Shankrith Chokkalingam ; Mathivanan, Anbuselvi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p962-5162a8f2a45778c778d1e6fe0693e5e8c0d5284c20d1811bcceb029cd6a368463</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Activities of daily living</topic><topic>Algorithms</topic><topic>Degrees of freedom</topic><topic>Machine learning</topic><topic>Robot arms</topic><topic>Robotics</topic><topic>Visual control</topic><topic>Wheelchairs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pabbichetty, Nimisha</creatorcontrib><creatorcontrib>Ramesh, Sai Aakash</creatorcontrib><creatorcontrib>Shunmugavel, Sandhiya</creatorcontrib><creatorcontrib>Satishkumaar, Shankrith Chokkalingam</creatorcontrib><creatorcontrib>Mathivanan, Anbuselvi</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pabbichetty, Nimisha</au><au>Ramesh, Sai Aakash</au><au>Shunmugavel, Sandhiya</au><au>Satishkumaar, Shankrith Chokkalingam</au><au>Mathivanan, Anbuselvi</au><au>D, Saravanakumar</au><au>G, Sakthivel</au><au>R, Jegadeeshwaran</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Grasp pose detection for control of an assistive robotic manipulator</atitle><btitle>AIP conference proceedings</btitle><date>2023-07-24</date><risdate>2023</risdate><volume>2788</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Robotic Assistive Devices are increasingly on-demand as they improve the quality of life of people, especially with upper limb motor impairments. These assistive devices allow individuals to work independently and perform Activities of Daily Living (ADL) like picking and placing, objects that are impossible to do without the other’s support. The proposed system involves the design of an assistive robotic arm system with 7-Degrees of Freedom (DOF), which could be mounted on the wheelchair. The arm is semi-autonomous and incorporates the user input while executing the planned trajectory. Visual servoing is made use of in tandem with a grasp pose detection algorithm to track and pick up the object of interest. The focus of this research work is to develop a more robust grasp pose detection algorithm using deep reinforcement learning that can detect grasp poses for unseen objects. All modules of the proposed system are designed and tested using the Gazebo simulator.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0148637</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2023, Vol.2788 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0148637 |
source | AIP Journals Complete |
subjects | Activities of daily living Algorithms Degrees of freedom Machine learning Robot arms Robotics Visual control Wheelchairs |
title | Grasp pose detection for control of an assistive robotic manipulator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T01%3A04%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Grasp%20pose%20detection%20for%20control%20of%20an%20assistive%20robotic%20manipulator&rft.btitle=AIP%20conference%20proceedings&rft.au=Pabbichetty,%20Nimisha&rft.date=2023-07-24&rft.volume=2788&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0148637&rft_dat=%3Cproquest_scita%3E2841164653%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2841164653&rft_id=info:pmid/&rfr_iscdi=true |