Tilted-angle insensitive received signal strength in visible light positioning systems using a deep neural network trained by synthetic data

Despite extensive research on received signal strength (RSS)-based visible light positioning (VLP), the receiver (RX) is assumed to stand vertically during the positioning process in most reported system designs. In this work, we propose a positioning strategy using a deep neural network (DNN) train...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2023-06, Vol.13 (6)
Hauptverfasser: Zhu, Junfeng, Lin, Mingliang, Xing, Jingchao, Chen, Boqian, Gu, Zhiliang, Zhang, Zhiqing, Xu, Yiqin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title AIP advances
container_volume 13
creator Zhu, Junfeng
Lin, Mingliang
Xing, Jingchao
Chen, Boqian
Gu, Zhiliang
Zhang, Zhiqing
Xu, Yiqin
description Despite extensive research on received signal strength (RSS)-based visible light positioning (VLP), the receiver (RX) is assumed to stand vertically during the positioning process in most reported system designs. In this work, we propose a positioning strategy using a deep neural network (DNN) trained by synthetic data to address this problem. We further explicitly state the deficiencies in the current RSS-VLP algorithms when handling positioning problems involving RX orientation. Compared with existing RSS-VLP algorithms, our method can achieve high positioning accuracy even when the RX orientation is unknown. The results can further verify the feasibility of the system. In addition to the orientation predictability, the trained DNN can also regulate the algorithm time for each position.
doi_str_mv 10.1063/5.0147861
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0147861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821453938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-c8b9171914ce8ba72123b03481c7b1213c57a713952ef7d40691660763236f583</originalsourceid><addsrcrecordid>eNp90M9KxDAQBvAiCsrqwTcIeFLomknaJj2K-A8EL-u5pOlsN1rTNZNd2XfwoU1ZD57MZRL45YP5suwc-Bx4Ja_LOYdC6QoOshMBpc6lENXhn_txdkb0xtMpauC6OMm-F26I2OXG9wMy5wk9uei2yAJaTLNj5HpvBkYxoO_jKiG2deTa5AfXryJbj9OX0TvfM9pRxA9iG5pehnWIa-ZxE1KCx_g1hncWg3E-Bbe7xH1cYXSWdSaa0-xoaQbCs985y17v7xa3j_nzy8PT7c1zboVWMbe6rUFBDYVF3RolQMiWy0KDVS0IkLZURoGsS4FL1RW8qqGquKqkkNWy1HKWXexz12H83CDF5m3chLQkNUILKEpZy0ld7pUNI1HAZbMO7sOEXQO8mfpuyua372Sv9pasi2Yq4x_8Ayg0gJk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821453938</pqid></control><display><type>article</type><title>Tilted-angle insensitive received signal strength in visible light positioning systems using a deep neural network trained by synthetic data</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhu, Junfeng ; Lin, Mingliang ; Xing, Jingchao ; Chen, Boqian ; Gu, Zhiliang ; Zhang, Zhiqing ; Xu, Yiqin</creator><creatorcontrib>Zhu, Junfeng ; Lin, Mingliang ; Xing, Jingchao ; Chen, Boqian ; Gu, Zhiliang ; Zhang, Zhiqing ; Xu, Yiqin</creatorcontrib><description>Despite extensive research on received signal strength (RSS)-based visible light positioning (VLP), the receiver (RX) is assumed to stand vertically during the positioning process in most reported system designs. In this work, we propose a positioning strategy using a deep neural network (DNN) trained by synthetic data to address this problem. We further explicitly state the deficiencies in the current RSS-VLP algorithms when handling positioning problems involving RX orientation. Compared with existing RSS-VLP algorithms, our method can achieve high positioning accuracy even when the RX orientation is unknown. The results can further verify the feasibility of the system. In addition to the orientation predictability, the trained DNN can also regulate the algorithm time for each position.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0147861</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Artificial neural networks ; Orientation ; Signal strength ; Synthetic data</subject><ispartof>AIP advances, 2023-06, Vol.13 (6)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-c8b9171914ce8ba72123b03481c7b1213c57a713952ef7d40691660763236f583</cites><orcidid>0009-0000-9629-8435 ; 0009-0004-1036-3574 ; 0000-0002-3120-5290 ; 0009-0009-2984-2707</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhu, Junfeng</creatorcontrib><creatorcontrib>Lin, Mingliang</creatorcontrib><creatorcontrib>Xing, Jingchao</creatorcontrib><creatorcontrib>Chen, Boqian</creatorcontrib><creatorcontrib>Gu, Zhiliang</creatorcontrib><creatorcontrib>Zhang, Zhiqing</creatorcontrib><creatorcontrib>Xu, Yiqin</creatorcontrib><title>Tilted-angle insensitive received signal strength in visible light positioning systems using a deep neural network trained by synthetic data</title><title>AIP advances</title><description>Despite extensive research on received signal strength (RSS)-based visible light positioning (VLP), the receiver (RX) is assumed to stand vertically during the positioning process in most reported system designs. In this work, we propose a positioning strategy using a deep neural network (DNN) trained by synthetic data to address this problem. We further explicitly state the deficiencies in the current RSS-VLP algorithms when handling positioning problems involving RX orientation. Compared with existing RSS-VLP algorithms, our method can achieve high positioning accuracy even when the RX orientation is unknown. The results can further verify the feasibility of the system. In addition to the orientation predictability, the trained DNN can also regulate the algorithm time for each position.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Orientation</subject><subject>Signal strength</subject><subject>Synthetic data</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90M9KxDAQBvAiCsrqwTcIeFLomknaJj2K-A8EL-u5pOlsN1rTNZNd2XfwoU1ZD57MZRL45YP5suwc-Bx4Ja_LOYdC6QoOshMBpc6lENXhn_txdkb0xtMpauC6OMm-F26I2OXG9wMy5wk9uei2yAJaTLNj5HpvBkYxoO_jKiG2deTa5AfXryJbj9OX0TvfM9pRxA9iG5pehnWIa-ZxE1KCx_g1hncWg3E-Bbe7xH1cYXSWdSaa0-xoaQbCs985y17v7xa3j_nzy8PT7c1zboVWMbe6rUFBDYVF3RolQMiWy0KDVS0IkLZURoGsS4FL1RW8qqGquKqkkNWy1HKWXexz12H83CDF5m3chLQkNUILKEpZy0ld7pUNI1HAZbMO7sOEXQO8mfpuyua372Sv9pasi2Yq4x_8Ayg0gJk</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Zhu, Junfeng</creator><creator>Lin, Mingliang</creator><creator>Xing, Jingchao</creator><creator>Chen, Boqian</creator><creator>Gu, Zhiliang</creator><creator>Zhang, Zhiqing</creator><creator>Xu, Yiqin</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0000-9629-8435</orcidid><orcidid>https://orcid.org/0009-0004-1036-3574</orcidid><orcidid>https://orcid.org/0000-0002-3120-5290</orcidid><orcidid>https://orcid.org/0009-0009-2984-2707</orcidid></search><sort><creationdate>20230601</creationdate><title>Tilted-angle insensitive received signal strength in visible light positioning systems using a deep neural network trained by synthetic data</title><author>Zhu, Junfeng ; Lin, Mingliang ; Xing, Jingchao ; Chen, Boqian ; Gu, Zhiliang ; Zhang, Zhiqing ; Xu, Yiqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-c8b9171914ce8ba72123b03481c7b1213c57a713952ef7d40691660763236f583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Orientation</topic><topic>Signal strength</topic><topic>Synthetic data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Junfeng</creatorcontrib><creatorcontrib>Lin, Mingliang</creatorcontrib><creatorcontrib>Xing, Jingchao</creatorcontrib><creatorcontrib>Chen, Boqian</creatorcontrib><creatorcontrib>Gu, Zhiliang</creatorcontrib><creatorcontrib>Zhang, Zhiqing</creatorcontrib><creatorcontrib>Xu, Yiqin</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Junfeng</au><au>Lin, Mingliang</au><au>Xing, Jingchao</au><au>Chen, Boqian</au><au>Gu, Zhiliang</au><au>Zhang, Zhiqing</au><au>Xu, Yiqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tilted-angle insensitive received signal strength in visible light positioning systems using a deep neural network trained by synthetic data</atitle><jtitle>AIP advances</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>13</volume><issue>6</issue><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Despite extensive research on received signal strength (RSS)-based visible light positioning (VLP), the receiver (RX) is assumed to stand vertically during the positioning process in most reported system designs. In this work, we propose a positioning strategy using a deep neural network (DNN) trained by synthetic data to address this problem. We further explicitly state the deficiencies in the current RSS-VLP algorithms when handling positioning problems involving RX orientation. Compared with existing RSS-VLP algorithms, our method can achieve high positioning accuracy even when the RX orientation is unknown. The results can further verify the feasibility of the system. In addition to the orientation predictability, the trained DNN can also regulate the algorithm time for each position.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0147861</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0000-9629-8435</orcidid><orcidid>https://orcid.org/0009-0004-1036-3574</orcidid><orcidid>https://orcid.org/0000-0002-3120-5290</orcidid><orcidid>https://orcid.org/0009-0009-2984-2707</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2023-06, Vol.13 (6)
issn 2158-3226
2158-3226
language eng
recordid cdi_scitation_primary_10_1063_5_0147861
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Algorithms
Artificial neural networks
Orientation
Signal strength
Synthetic data
title Tilted-angle insensitive received signal strength in visible light positioning systems using a deep neural network trained by synthetic data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A27%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tilted-angle%20insensitive%20received%20signal%20strength%20in%20visible%20light%20positioning%20systems%20using%20a%20deep%20neural%20network%20trained%20by%20synthetic%20data&rft.jtitle=AIP%20advances&rft.au=Zhu,%20Junfeng&rft.date=2023-06-01&rft.volume=13&rft.issue=6&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0147861&rft_dat=%3Cproquest_scita%3E2821453938%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821453938&rft_id=info:pmid/&rfr_iscdi=true