Tilted-angle insensitive received signal strength in visible light positioning systems using a deep neural network trained by synthetic data
Despite extensive research on received signal strength (RSS)-based visible light positioning (VLP), the receiver (RX) is assumed to stand vertically during the positioning process in most reported system designs. In this work, we propose a positioning strategy using a deep neural network (DNN) train...
Gespeichert in:
Veröffentlicht in: | AIP advances 2023-06, Vol.13 (6) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | AIP advances |
container_volume | 13 |
creator | Zhu, Junfeng Lin, Mingliang Xing, Jingchao Chen, Boqian Gu, Zhiliang Zhang, Zhiqing Xu, Yiqin |
description | Despite extensive research on received signal strength (RSS)-based visible light positioning (VLP), the receiver (RX) is assumed to stand vertically during the positioning process in most reported system designs. In this work, we propose a positioning strategy using a deep neural network (DNN) trained by synthetic data to address this problem. We further explicitly state the deficiencies in the current RSS-VLP algorithms when handling positioning problems involving RX orientation. Compared with existing RSS-VLP algorithms, our method can achieve high positioning accuracy even when the RX orientation is unknown. The results can further verify the feasibility of the system. In addition to the orientation predictability, the trained DNN can also regulate the algorithm time for each position. |
doi_str_mv | 10.1063/5.0147861 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0147861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821453938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-c8b9171914ce8ba72123b03481c7b1213c57a713952ef7d40691660763236f583</originalsourceid><addsrcrecordid>eNp90M9KxDAQBvAiCsrqwTcIeFLomknaJj2K-A8EL-u5pOlsN1rTNZNd2XfwoU1ZD57MZRL45YP5suwc-Bx4Ja_LOYdC6QoOshMBpc6lENXhn_txdkb0xtMpauC6OMm-F26I2OXG9wMy5wk9uei2yAJaTLNj5HpvBkYxoO_jKiG2deTa5AfXryJbj9OX0TvfM9pRxA9iG5pehnWIa-ZxE1KCx_g1hncWg3E-Bbe7xH1cYXSWdSaa0-xoaQbCs985y17v7xa3j_nzy8PT7c1zboVWMbe6rUFBDYVF3RolQMiWy0KDVS0IkLZURoGsS4FL1RW8qqGquKqkkNWy1HKWXexz12H83CDF5m3chLQkNUILKEpZy0ld7pUNI1HAZbMO7sOEXQO8mfpuyua372Sv9pasi2Yq4x_8Ayg0gJk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821453938</pqid></control><display><type>article</type><title>Tilted-angle insensitive received signal strength in visible light positioning systems using a deep neural network trained by synthetic data</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhu, Junfeng ; Lin, Mingliang ; Xing, Jingchao ; Chen, Boqian ; Gu, Zhiliang ; Zhang, Zhiqing ; Xu, Yiqin</creator><creatorcontrib>Zhu, Junfeng ; Lin, Mingliang ; Xing, Jingchao ; Chen, Boqian ; Gu, Zhiliang ; Zhang, Zhiqing ; Xu, Yiqin</creatorcontrib><description>Despite extensive research on received signal strength (RSS)-based visible light positioning (VLP), the receiver (RX) is assumed to stand vertically during the positioning process in most reported system designs. In this work, we propose a positioning strategy using a deep neural network (DNN) trained by synthetic data to address this problem. We further explicitly state the deficiencies in the current RSS-VLP algorithms when handling positioning problems involving RX orientation. Compared with existing RSS-VLP algorithms, our method can achieve high positioning accuracy even when the RX orientation is unknown. The results can further verify the feasibility of the system. In addition to the orientation predictability, the trained DNN can also regulate the algorithm time for each position.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0147861</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Artificial neural networks ; Orientation ; Signal strength ; Synthetic data</subject><ispartof>AIP advances, 2023-06, Vol.13 (6)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-c8b9171914ce8ba72123b03481c7b1213c57a713952ef7d40691660763236f583</cites><orcidid>0009-0000-9629-8435 ; 0009-0004-1036-3574 ; 0000-0002-3120-5290 ; 0009-0009-2984-2707</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhu, Junfeng</creatorcontrib><creatorcontrib>Lin, Mingliang</creatorcontrib><creatorcontrib>Xing, Jingchao</creatorcontrib><creatorcontrib>Chen, Boqian</creatorcontrib><creatorcontrib>Gu, Zhiliang</creatorcontrib><creatorcontrib>Zhang, Zhiqing</creatorcontrib><creatorcontrib>Xu, Yiqin</creatorcontrib><title>Tilted-angle insensitive received signal strength in visible light positioning systems using a deep neural network trained by synthetic data</title><title>AIP advances</title><description>Despite extensive research on received signal strength (RSS)-based visible light positioning (VLP), the receiver (RX) is assumed to stand vertically during the positioning process in most reported system designs. In this work, we propose a positioning strategy using a deep neural network (DNN) trained by synthetic data to address this problem. We further explicitly state the deficiencies in the current RSS-VLP algorithms when handling positioning problems involving RX orientation. Compared with existing RSS-VLP algorithms, our method can achieve high positioning accuracy even when the RX orientation is unknown. The results can further verify the feasibility of the system. In addition to the orientation predictability, the trained DNN can also regulate the algorithm time for each position.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Orientation</subject><subject>Signal strength</subject><subject>Synthetic data</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90M9KxDAQBvAiCsrqwTcIeFLomknaJj2K-A8EL-u5pOlsN1rTNZNd2XfwoU1ZD57MZRL45YP5suwc-Bx4Ja_LOYdC6QoOshMBpc6lENXhn_txdkb0xtMpauC6OMm-F26I2OXG9wMy5wk9uei2yAJaTLNj5HpvBkYxoO_jKiG2deTa5AfXryJbj9OX0TvfM9pRxA9iG5pehnWIa-ZxE1KCx_g1hncWg3E-Bbe7xH1cYXSWdSaa0-xoaQbCs985y17v7xa3j_nzy8PT7c1zboVWMbe6rUFBDYVF3RolQMiWy0KDVS0IkLZURoGsS4FL1RW8qqGquKqkkNWy1HKWXexz12H83CDF5m3chLQkNUILKEpZy0ld7pUNI1HAZbMO7sOEXQO8mfpuyua372Sv9pasi2Yq4x_8Ayg0gJk</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Zhu, Junfeng</creator><creator>Lin, Mingliang</creator><creator>Xing, Jingchao</creator><creator>Chen, Boqian</creator><creator>Gu, Zhiliang</creator><creator>Zhang, Zhiqing</creator><creator>Xu, Yiqin</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0000-9629-8435</orcidid><orcidid>https://orcid.org/0009-0004-1036-3574</orcidid><orcidid>https://orcid.org/0000-0002-3120-5290</orcidid><orcidid>https://orcid.org/0009-0009-2984-2707</orcidid></search><sort><creationdate>20230601</creationdate><title>Tilted-angle insensitive received signal strength in visible light positioning systems using a deep neural network trained by synthetic data</title><author>Zhu, Junfeng ; Lin, Mingliang ; Xing, Jingchao ; Chen, Boqian ; Gu, Zhiliang ; Zhang, Zhiqing ; Xu, Yiqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-c8b9171914ce8ba72123b03481c7b1213c57a713952ef7d40691660763236f583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Orientation</topic><topic>Signal strength</topic><topic>Synthetic data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Junfeng</creatorcontrib><creatorcontrib>Lin, Mingliang</creatorcontrib><creatorcontrib>Xing, Jingchao</creatorcontrib><creatorcontrib>Chen, Boqian</creatorcontrib><creatorcontrib>Gu, Zhiliang</creatorcontrib><creatorcontrib>Zhang, Zhiqing</creatorcontrib><creatorcontrib>Xu, Yiqin</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Junfeng</au><au>Lin, Mingliang</au><au>Xing, Jingchao</au><au>Chen, Boqian</au><au>Gu, Zhiliang</au><au>Zhang, Zhiqing</au><au>Xu, Yiqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tilted-angle insensitive received signal strength in visible light positioning systems using a deep neural network trained by synthetic data</atitle><jtitle>AIP advances</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>13</volume><issue>6</issue><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Despite extensive research on received signal strength (RSS)-based visible light positioning (VLP), the receiver (RX) is assumed to stand vertically during the positioning process in most reported system designs. In this work, we propose a positioning strategy using a deep neural network (DNN) trained by synthetic data to address this problem. We further explicitly state the deficiencies in the current RSS-VLP algorithms when handling positioning problems involving RX orientation. Compared with existing RSS-VLP algorithms, our method can achieve high positioning accuracy even when the RX orientation is unknown. The results can further verify the feasibility of the system. In addition to the orientation predictability, the trained DNN can also regulate the algorithm time for each position.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0147861</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0000-9629-8435</orcidid><orcidid>https://orcid.org/0009-0004-1036-3574</orcidid><orcidid>https://orcid.org/0000-0002-3120-5290</orcidid><orcidid>https://orcid.org/0009-0009-2984-2707</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-3226 |
ispartof | AIP advances, 2023-06, Vol.13 (6) |
issn | 2158-3226 2158-3226 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0147861 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Algorithms Artificial neural networks Orientation Signal strength Synthetic data |
title | Tilted-angle insensitive received signal strength in visible light positioning systems using a deep neural network trained by synthetic data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A27%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tilted-angle%20insensitive%20received%20signal%20strength%20in%20visible%20light%20positioning%20systems%20using%20a%20deep%20neural%20network%20trained%20by%20synthetic%20data&rft.jtitle=AIP%20advances&rft.au=Zhu,%20Junfeng&rft.date=2023-06-01&rft.volume=13&rft.issue=6&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0147861&rft_dat=%3Cproquest_scita%3E2821453938%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821453938&rft_id=info:pmid/&rfr_iscdi=true |