Origins of epitaxial macro-terraces and macro-steps on GaN substrates

Localized lattice distortions in GaN substrates can serve as nucleation sites for epitaxial macro-steps and macro-terraces. These detrimental macro-scale features give rise to optically hazy homoepitaxial GaN surfaces. After nucleating, these macro-features grow laterally along the surface and coale...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2023-05, Vol.133 (18)
Hauptverfasser: Liao, Michael E., Olsen, William L., Huynh, Kenny, Luccioni, Dorian P., Wang, Yekan, Huang, XianRong, Wojcik, Michael J., Allerman, Andrew A., Goorsky, Mark S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 18
container_start_page
container_title Journal of applied physics
container_volume 133
creator Liao, Michael E.
Olsen, William L.
Huynh, Kenny
Luccioni, Dorian P.
Wang, Yekan
Huang, XianRong
Wojcik, Michael J.
Allerman, Andrew A.
Goorsky, Mark S.
description Localized lattice distortions in GaN substrates can serve as nucleation sites for epitaxial macro-steps and macro-terraces. These detrimental macro-scale features give rise to optically hazy homoepitaxial GaN surfaces. After nucleating, these macro-features grow laterally along the surface and coalesce, leading to significant coverage of the wafer surface. Dot-core GaN substrates consisting of a periodic array of cores were used as a defect-engineered system, where dislocations are intentionally concentrated at the cores. The high density of threading dislocations at the cores induced localized lattice distortions. These distortions are associated predominantly with lattice tilt on the order of hundreds of arcsec across ∼0.5 mm laterally along the wafer surface. The resulting macro-features that nucleated at these localized distorted sites were made up of macro-terraces with lengths ranging ∼30–∼150 μm and macro-step heights ranging ∼200–∼400 nm. Another source of localized distortion was threading screw dislocations or GaN nanopipes that resulted in spiral growth and hillock formation. Based on x-ray topography and optical microscopy measurements, we speculate that the coalescence of hillocks evolves into macro-terraces and macro-steps. While previous studies focused on the substrate miscut as a means to control macro-feature formation, we show that localized lattice tilt from defects is another important contributor to macro-feature formation.
doi_str_mv 10.1063/5.0147667
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0147667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811058451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-f2eabf9d325c9736474be6a013f4e4b96ec5de62adaeff6c6998948571d155913</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgCtbqwjcYdKUwNZncJkuRWoViN7oOaeZEU9rJmKSib--UKboQXB04fPzngtA5wROCBb3hE0yYFEIeoBHBtSol5_gQjTCuSFkrqY7RSUorjAmpqRqh6SL6V9-mIrgCOp_NpzfrYmNsDGWGGI2FVJi22bdShq63bTEzT0XaLlOOJkM6RUfOrBOc7esYvdxPn-8eyvli9nh3Oy8trVUuXQVm6VRDK26VpIJJtgRhMKGOAVsqAZY3ICrTGHBOWKFUrVjNJWkI54rQMboYckPKXifrM9g3G9oWbNYVo1Jy1qPLAXUxvG8hZb0K29j2e-mqJgTzmvFd1NWg-rNSiuB0F_3GxC9NsN69UnO9f2Vvrwe7m2iyD-0P_gjxF-qucf_hv8nfxbeA3A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811058451</pqid></control><display><type>article</type><title>Origins of epitaxial macro-terraces and macro-steps on GaN substrates</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Liao, Michael E. ; Olsen, William L. ; Huynh, Kenny ; Luccioni, Dorian P. ; Wang, Yekan ; Huang, XianRong ; Wojcik, Michael J. ; Allerman, Andrew A. ; Goorsky, Mark S.</creator><creatorcontrib>Liao, Michael E. ; Olsen, William L. ; Huynh, Kenny ; Luccioni, Dorian P. ; Wang, Yekan ; Huang, XianRong ; Wojcik, Michael J. ; Allerman, Andrew A. ; Goorsky, Mark S. ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>Localized lattice distortions in GaN substrates can serve as nucleation sites for epitaxial macro-steps and macro-terraces. These detrimental macro-scale features give rise to optically hazy homoepitaxial GaN surfaces. After nucleating, these macro-features grow laterally along the surface and coalesce, leading to significant coverage of the wafer surface. Dot-core GaN substrates consisting of a periodic array of cores were used as a defect-engineered system, where dislocations are intentionally concentrated at the cores. The high density of threading dislocations at the cores induced localized lattice distortions. These distortions are associated predominantly with lattice tilt on the order of hundreds of arcsec across ∼0.5 mm laterally along the wafer surface. The resulting macro-features that nucleated at these localized distorted sites were made up of macro-terraces with lengths ranging ∼30–∼150 μm and macro-step heights ranging ∼200–∼400 nm. Another source of localized distortion was threading screw dislocations or GaN nanopipes that resulted in spiral growth and hillock formation. Based on x-ray topography and optical microscopy measurements, we speculate that the coalescence of hillocks evolves into macro-terraces and macro-steps. While previous studies focused on the substrate miscut as a means to control macro-feature formation, we show that localized lattice tilt from defects is another important contributor to macro-feature formation.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0147667</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Defects ; Dislocation density ; MATERIALS SCIENCE ; Nucleation ; Optical microscopy ; Screw dislocations ; Substrates ; Terraces ; Threading dislocations ; X ray topography</subject><ispartof>Journal of applied physics, 2023-05, Vol.133 (18)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-f2eabf9d325c9736474be6a013f4e4b96ec5de62adaeff6c6998948571d155913</citedby><cites>FETCH-LOGICAL-c389t-f2eabf9d325c9736474be6a013f4e4b96ec5de62adaeff6c6998948571d155913</cites><orcidid>0000-0001-5946-7420 ; 0000-0003-4588-8915 ; 0000-0003-3692-4240 ; 0000-0003-3103-9357 ; 0000-0003-1257-870X ; 0000-0002-0038-9197 ; 0000-0002-3416-6688 ; 0000-0001-5959-696X ; 0000000200389197 ; 000000015959696X ; 000000031257870X ; 0000000345888915 ; 0000000331039357 ; 0000000234166688 ; 0000000336924240 ; 0000000159467420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0147667$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2437754$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liao, Michael E.</creatorcontrib><creatorcontrib>Olsen, William L.</creatorcontrib><creatorcontrib>Huynh, Kenny</creatorcontrib><creatorcontrib>Luccioni, Dorian P.</creatorcontrib><creatorcontrib>Wang, Yekan</creatorcontrib><creatorcontrib>Huang, XianRong</creatorcontrib><creatorcontrib>Wojcik, Michael J.</creatorcontrib><creatorcontrib>Allerman, Andrew A.</creatorcontrib><creatorcontrib>Goorsky, Mark S.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>Origins of epitaxial macro-terraces and macro-steps on GaN substrates</title><title>Journal of applied physics</title><description>Localized lattice distortions in GaN substrates can serve as nucleation sites for epitaxial macro-steps and macro-terraces. These detrimental macro-scale features give rise to optically hazy homoepitaxial GaN surfaces. After nucleating, these macro-features grow laterally along the surface and coalesce, leading to significant coverage of the wafer surface. Dot-core GaN substrates consisting of a periodic array of cores were used as a defect-engineered system, where dislocations are intentionally concentrated at the cores. The high density of threading dislocations at the cores induced localized lattice distortions. These distortions are associated predominantly with lattice tilt on the order of hundreds of arcsec across ∼0.5 mm laterally along the wafer surface. The resulting macro-features that nucleated at these localized distorted sites were made up of macro-terraces with lengths ranging ∼30–∼150 μm and macro-step heights ranging ∼200–∼400 nm. Another source of localized distortion was threading screw dislocations or GaN nanopipes that resulted in spiral growth and hillock formation. Based on x-ray topography and optical microscopy measurements, we speculate that the coalescence of hillocks evolves into macro-terraces and macro-steps. While previous studies focused on the substrate miscut as a means to control macro-feature formation, we show that localized lattice tilt from defects is another important contributor to macro-feature formation.</description><subject>Applied physics</subject><subject>Defects</subject><subject>Dislocation density</subject><subject>MATERIALS SCIENCE</subject><subject>Nucleation</subject><subject>Optical microscopy</subject><subject>Screw dislocations</subject><subject>Substrates</subject><subject>Terraces</subject><subject>Threading dislocations</subject><subject>X ray topography</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgCtbqwjcYdKUwNZncJkuRWoViN7oOaeZEU9rJmKSib--UKboQXB04fPzngtA5wROCBb3hE0yYFEIeoBHBtSol5_gQjTCuSFkrqY7RSUorjAmpqRqh6SL6V9-mIrgCOp_NpzfrYmNsDGWGGI2FVJi22bdShq63bTEzT0XaLlOOJkM6RUfOrBOc7esYvdxPn-8eyvli9nh3Oy8trVUuXQVm6VRDK26VpIJJtgRhMKGOAVsqAZY3ICrTGHBOWKFUrVjNJWkI54rQMboYckPKXifrM9g3G9oWbNYVo1Jy1qPLAXUxvG8hZb0K29j2e-mqJgTzmvFd1NWg-rNSiuB0F_3GxC9NsN69UnO9f2Vvrwe7m2iyD-0P_gjxF-qucf_hv8nfxbeA3A</recordid><startdate>20230514</startdate><enddate>20230514</enddate><creator>Liao, Michael E.</creator><creator>Olsen, William L.</creator><creator>Huynh, Kenny</creator><creator>Luccioni, Dorian P.</creator><creator>Wang, Yekan</creator><creator>Huang, XianRong</creator><creator>Wojcik, Michael J.</creator><creator>Allerman, Andrew A.</creator><creator>Goorsky, Mark S.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5946-7420</orcidid><orcidid>https://orcid.org/0000-0003-4588-8915</orcidid><orcidid>https://orcid.org/0000-0003-3692-4240</orcidid><orcidid>https://orcid.org/0000-0003-3103-9357</orcidid><orcidid>https://orcid.org/0000-0003-1257-870X</orcidid><orcidid>https://orcid.org/0000-0002-0038-9197</orcidid><orcidid>https://orcid.org/0000-0002-3416-6688</orcidid><orcidid>https://orcid.org/0000-0001-5959-696X</orcidid><orcidid>https://orcid.org/0000000200389197</orcidid><orcidid>https://orcid.org/000000015959696X</orcidid><orcidid>https://orcid.org/000000031257870X</orcidid><orcidid>https://orcid.org/0000000345888915</orcidid><orcidid>https://orcid.org/0000000331039357</orcidid><orcidid>https://orcid.org/0000000234166688</orcidid><orcidid>https://orcid.org/0000000336924240</orcidid><orcidid>https://orcid.org/0000000159467420</orcidid></search><sort><creationdate>20230514</creationdate><title>Origins of epitaxial macro-terraces and macro-steps on GaN substrates</title><author>Liao, Michael E. ; Olsen, William L. ; Huynh, Kenny ; Luccioni, Dorian P. ; Wang, Yekan ; Huang, XianRong ; Wojcik, Michael J. ; Allerman, Andrew A. ; Goorsky, Mark S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-f2eabf9d325c9736474be6a013f4e4b96ec5de62adaeff6c6998948571d155913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Defects</topic><topic>Dislocation density</topic><topic>MATERIALS SCIENCE</topic><topic>Nucleation</topic><topic>Optical microscopy</topic><topic>Screw dislocations</topic><topic>Substrates</topic><topic>Terraces</topic><topic>Threading dislocations</topic><topic>X ray topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Michael E.</creatorcontrib><creatorcontrib>Olsen, William L.</creatorcontrib><creatorcontrib>Huynh, Kenny</creatorcontrib><creatorcontrib>Luccioni, Dorian P.</creatorcontrib><creatorcontrib>Wang, Yekan</creatorcontrib><creatorcontrib>Huang, XianRong</creatorcontrib><creatorcontrib>Wojcik, Michael J.</creatorcontrib><creatorcontrib>Allerman, Andrew A.</creatorcontrib><creatorcontrib>Goorsky, Mark S.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Michael E.</au><au>Olsen, William L.</au><au>Huynh, Kenny</au><au>Luccioni, Dorian P.</au><au>Wang, Yekan</au><au>Huang, XianRong</au><au>Wojcik, Michael J.</au><au>Allerman, Andrew A.</au><au>Goorsky, Mark S.</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origins of epitaxial macro-terraces and macro-steps on GaN substrates</atitle><jtitle>Journal of applied physics</jtitle><date>2023-05-14</date><risdate>2023</risdate><volume>133</volume><issue>18</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Localized lattice distortions in GaN substrates can serve as nucleation sites for epitaxial macro-steps and macro-terraces. These detrimental macro-scale features give rise to optically hazy homoepitaxial GaN surfaces. After nucleating, these macro-features grow laterally along the surface and coalesce, leading to significant coverage of the wafer surface. Dot-core GaN substrates consisting of a periodic array of cores were used as a defect-engineered system, where dislocations are intentionally concentrated at the cores. The high density of threading dislocations at the cores induced localized lattice distortions. These distortions are associated predominantly with lattice tilt on the order of hundreds of arcsec across ∼0.5 mm laterally along the wafer surface. The resulting macro-features that nucleated at these localized distorted sites were made up of macro-terraces with lengths ranging ∼30–∼150 μm and macro-step heights ranging ∼200–∼400 nm. Another source of localized distortion was threading screw dislocations or GaN nanopipes that resulted in spiral growth and hillock formation. Based on x-ray topography and optical microscopy measurements, we speculate that the coalescence of hillocks evolves into macro-terraces and macro-steps. While previous studies focused on the substrate miscut as a means to control macro-feature formation, we show that localized lattice tilt from defects is another important contributor to macro-feature formation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0147667</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5946-7420</orcidid><orcidid>https://orcid.org/0000-0003-4588-8915</orcidid><orcidid>https://orcid.org/0000-0003-3692-4240</orcidid><orcidid>https://orcid.org/0000-0003-3103-9357</orcidid><orcidid>https://orcid.org/0000-0003-1257-870X</orcidid><orcidid>https://orcid.org/0000-0002-0038-9197</orcidid><orcidid>https://orcid.org/0000-0002-3416-6688</orcidid><orcidid>https://orcid.org/0000-0001-5959-696X</orcidid><orcidid>https://orcid.org/0000000200389197</orcidid><orcidid>https://orcid.org/000000015959696X</orcidid><orcidid>https://orcid.org/000000031257870X</orcidid><orcidid>https://orcid.org/0000000345888915</orcidid><orcidid>https://orcid.org/0000000331039357</orcidid><orcidid>https://orcid.org/0000000234166688</orcidid><orcidid>https://orcid.org/0000000336924240</orcidid><orcidid>https://orcid.org/0000000159467420</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2023-05, Vol.133 (18)
issn 0021-8979
1089-7550
language eng
recordid cdi_scitation_primary_10_1063_5_0147667
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Defects
Dislocation density
MATERIALS SCIENCE
Nucleation
Optical microscopy
Screw dislocations
Substrates
Terraces
Threading dislocations
X ray topography
title Origins of epitaxial macro-terraces and macro-steps on GaN substrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A29%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origins%20of%20epitaxial%20macro-terraces%20and%20macro-steps%20on%20GaN%20substrates&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Liao,%20Michael%20E.&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2023-05-14&rft.volume=133&rft.issue=18&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0147667&rft_dat=%3Cproquest_scita%3E2811058451%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811058451&rft_id=info:pmid/&rfr_iscdi=true