Hochschild cohomology of the Weyl conformal algebra with coefficients in finite modules

In this work, we find Hochschild cohomology groups of the Weyl associative conformal algebra with coefficients in all finite modules. The Weyl conformal algebra is the universal associative conformal envelope of the Virasoro Lie conformal algebra relative to the locality N = 2. In order to obtain th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2023-04, Vol.64 (4)
Hauptverfasser: Alhussein, H., Kolesnikov, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Journal of mathematical physics
container_volume 64
creator Alhussein, H.
Kolesnikov, P.
description In this work, we find Hochschild cohomology groups of the Weyl associative conformal algebra with coefficients in all finite modules. The Weyl conformal algebra is the universal associative conformal envelope of the Virasoro Lie conformal algebra relative to the locality N = 2. In order to obtain this result, we adjust the algebraic discrete Morse theory to the case of differential algebras.
doi_str_mv 10.1063/5.0146223
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0146223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2795811262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-55a424ad1462dbf1d9849caead786e3a1b78f63b3f9964f4481a185ce3dcdaf93</originalsourceid><addsrcrecordid>eNqd0MtKAzEUBuAgCtbqwjcIuFKYmtvMJEspaoWCG6XLkMmlkzIzqUmq9O2d0oJ7Vwd-Ps45_ADcYjTDqKKP5QxhVhFCz8AEIy6Kuir5OZggREhBGOeX4CqlDUIYc8YmYLUIuk269Z2BOrShD11Y72FwMLcWruy-G-PBhdirDqpubZuo4I_P7Rhb57z2dsgJ-gE6P_hsYR_MrrPpGlw41SV7c5pT8Pny_DFfFMv317f507LQlJBclKVihClz-Nk0DhvBmdDKKlPzylKFm5q7ijbUCVExxxjHCvNSW2q0UU7QKbg77t3G8LWzKctN2MVhPClJLUqOManIqO6PSseQUrRObqPvVdxLjOShN1nKU2-jfTjapH1W2Yfhf_g7xD8ot8bRXw2mfF0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795811262</pqid></control><display><type>article</type><title>Hochschild cohomology of the Weyl conformal algebra with coefficients in finite modules</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Alhussein, H. ; Kolesnikov, P.</creator><creatorcontrib>Alhussein, H. ; Kolesnikov, P.</creatorcontrib><description>In this work, we find Hochschild cohomology groups of the Weyl associative conformal algebra with coefficients in all finite modules. The Weyl conformal algebra is the universal associative conformal envelope of the Virasoro Lie conformal algebra relative to the locality N = 2. In order to obtain this result, we adjust the algebraic discrete Morse theory to the case of differential algebras.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0146223</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Algebra ; Homology ; Modules ; Physics</subject><ispartof>Journal of mathematical physics, 2023-04, Vol.64 (4)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c322t-55a424ad1462dbf1d9849caead786e3a1b78f63b3f9964f4481a185ce3dcdaf93</cites><orcidid>0000-0002-7534-1534 ; 0000-0002-8093-756X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0146223$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,4499,27906,27907,76134</link.rule.ids></links><search><creatorcontrib>Alhussein, H.</creatorcontrib><creatorcontrib>Kolesnikov, P.</creatorcontrib><title>Hochschild cohomology of the Weyl conformal algebra with coefficients in finite modules</title><title>Journal of mathematical physics</title><description>In this work, we find Hochschild cohomology groups of the Weyl associative conformal algebra with coefficients in all finite modules. The Weyl conformal algebra is the universal associative conformal envelope of the Virasoro Lie conformal algebra relative to the locality N = 2. In order to obtain this result, we adjust the algebraic discrete Morse theory to the case of differential algebras.</description><subject>Algebra</subject><subject>Homology</subject><subject>Modules</subject><subject>Physics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqd0MtKAzEUBuAgCtbqwjcIuFKYmtvMJEspaoWCG6XLkMmlkzIzqUmq9O2d0oJ7Vwd-Ps45_ADcYjTDqKKP5QxhVhFCz8AEIy6Kuir5OZggREhBGOeX4CqlDUIYc8YmYLUIuk269Z2BOrShD11Y72FwMLcWruy-G-PBhdirDqpubZuo4I_P7Rhb57z2dsgJ-gE6P_hsYR_MrrPpGlw41SV7c5pT8Pny_DFfFMv317f507LQlJBclKVihClz-Nk0DhvBmdDKKlPzylKFm5q7ijbUCVExxxjHCvNSW2q0UU7QKbg77t3G8LWzKctN2MVhPClJLUqOManIqO6PSseQUrRObqPvVdxLjOShN1nKU2-jfTjapH1W2Yfhf_g7xD8ot8bRXw2mfF0</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Alhussein, H.</creator><creator>Kolesnikov, P.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7534-1534</orcidid><orcidid>https://orcid.org/0000-0002-8093-756X</orcidid></search><sort><creationdate>20230401</creationdate><title>Hochschild cohomology of the Weyl conformal algebra with coefficients in finite modules</title><author>Alhussein, H. ; Kolesnikov, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-55a424ad1462dbf1d9849caead786e3a1b78f63b3f9964f4481a185ce3dcdaf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Homology</topic><topic>Modules</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alhussein, H.</creatorcontrib><creatorcontrib>Kolesnikov, P.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alhussein, H.</au><au>Kolesnikov, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hochschild cohomology of the Weyl conformal algebra with coefficients in finite modules</atitle><jtitle>Journal of mathematical physics</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>64</volume><issue>4</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>In this work, we find Hochschild cohomology groups of the Weyl associative conformal algebra with coefficients in all finite modules. The Weyl conformal algebra is the universal associative conformal envelope of the Virasoro Lie conformal algebra relative to the locality N = 2. In order to obtain this result, we adjust the algebraic discrete Morse theory to the case of differential algebras.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0146223</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7534-1534</orcidid><orcidid>https://orcid.org/0000-0002-8093-756X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2023-04, Vol.64 (4)
issn 0022-2488
1089-7658
language eng
recordid cdi_scitation_primary_10_1063_5_0146223
source AIP Journals Complete; Alma/SFX Local Collection
subjects Algebra
Homology
Modules
Physics
title Hochschild cohomology of the Weyl conformal algebra with coefficients in finite modules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A22%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hochschild%20cohomology%20of%20the%20Weyl%20conformal%20algebra%20with%20coefficients%20in%20finite%20modules&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Alhussein,%20H.&rft.date=2023-04-01&rft.volume=64&rft.issue=4&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0146223&rft_dat=%3Cproquest_scita%3E2795811262%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2795811262&rft_id=info:pmid/&rfr_iscdi=true