Hochschild cohomology of the Weyl conformal algebra with coefficients in finite modules
In this work, we find Hochschild cohomology groups of the Weyl associative conformal algebra with coefficients in all finite modules. The Weyl conformal algebra is the universal associative conformal envelope of the Virasoro Lie conformal algebra relative to the locality N = 2. In order to obtain th...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2023-04, Vol.64 (4) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Journal of mathematical physics |
container_volume | 64 |
creator | Alhussein, H. Kolesnikov, P. |
description | In this work, we find Hochschild cohomology groups of the Weyl associative conformal algebra with coefficients in all finite modules. The Weyl conformal algebra is the universal associative conformal envelope of the Virasoro Lie conformal algebra relative to the locality N = 2. In order to obtain this result, we adjust the algebraic discrete Morse theory to the case of differential algebras. |
doi_str_mv | 10.1063/5.0146223 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0146223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2795811262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-55a424ad1462dbf1d9849caead786e3a1b78f63b3f9964f4481a185ce3dcdaf93</originalsourceid><addsrcrecordid>eNqd0MtKAzEUBuAgCtbqwjcIuFKYmtvMJEspaoWCG6XLkMmlkzIzqUmq9O2d0oJ7Vwd-Ps45_ADcYjTDqKKP5QxhVhFCz8AEIy6Kuir5OZggREhBGOeX4CqlDUIYc8YmYLUIuk269Z2BOrShD11Y72FwMLcWruy-G-PBhdirDqpubZuo4I_P7Rhb57z2dsgJ-gE6P_hsYR_MrrPpGlw41SV7c5pT8Pny_DFfFMv317f507LQlJBclKVihClz-Nk0DhvBmdDKKlPzylKFm5q7ijbUCVExxxjHCvNSW2q0UU7QKbg77t3G8LWzKctN2MVhPClJLUqOManIqO6PSseQUrRObqPvVdxLjOShN1nKU2-jfTjapH1W2Yfhf_g7xD8ot8bRXw2mfF0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795811262</pqid></control><display><type>article</type><title>Hochschild cohomology of the Weyl conformal algebra with coefficients in finite modules</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Alhussein, H. ; Kolesnikov, P.</creator><creatorcontrib>Alhussein, H. ; Kolesnikov, P.</creatorcontrib><description>In this work, we find Hochschild cohomology groups of the Weyl associative conformal algebra with coefficients in all finite modules. The Weyl conformal algebra is the universal associative conformal envelope of the Virasoro Lie conformal algebra relative to the locality N = 2. In order to obtain this result, we adjust the algebraic discrete Morse theory to the case of differential algebras.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0146223</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Algebra ; Homology ; Modules ; Physics</subject><ispartof>Journal of mathematical physics, 2023-04, Vol.64 (4)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c322t-55a424ad1462dbf1d9849caead786e3a1b78f63b3f9964f4481a185ce3dcdaf93</cites><orcidid>0000-0002-7534-1534 ; 0000-0002-8093-756X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0146223$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,4499,27906,27907,76134</link.rule.ids></links><search><creatorcontrib>Alhussein, H.</creatorcontrib><creatorcontrib>Kolesnikov, P.</creatorcontrib><title>Hochschild cohomology of the Weyl conformal algebra with coefficients in finite modules</title><title>Journal of mathematical physics</title><description>In this work, we find Hochschild cohomology groups of the Weyl associative conformal algebra with coefficients in all finite modules. The Weyl conformal algebra is the universal associative conformal envelope of the Virasoro Lie conformal algebra relative to the locality N = 2. In order to obtain this result, we adjust the algebraic discrete Morse theory to the case of differential algebras.</description><subject>Algebra</subject><subject>Homology</subject><subject>Modules</subject><subject>Physics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqd0MtKAzEUBuAgCtbqwjcIuFKYmtvMJEspaoWCG6XLkMmlkzIzqUmq9O2d0oJ7Vwd-Ps45_ADcYjTDqKKP5QxhVhFCz8AEIy6Kuir5OZggREhBGOeX4CqlDUIYc8YmYLUIuk269Z2BOrShD11Y72FwMLcWruy-G-PBhdirDqpubZuo4I_P7Rhb57z2dsgJ-gE6P_hsYR_MrrPpGlw41SV7c5pT8Pny_DFfFMv317f507LQlJBclKVihClz-Nk0DhvBmdDKKlPzylKFm5q7ijbUCVExxxjHCvNSW2q0UU7QKbg77t3G8LWzKctN2MVhPClJLUqOManIqO6PSseQUrRObqPvVdxLjOShN1nKU2-jfTjapH1W2Yfhf_g7xD8ot8bRXw2mfF0</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Alhussein, H.</creator><creator>Kolesnikov, P.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7534-1534</orcidid><orcidid>https://orcid.org/0000-0002-8093-756X</orcidid></search><sort><creationdate>20230401</creationdate><title>Hochschild cohomology of the Weyl conformal algebra with coefficients in finite modules</title><author>Alhussein, H. ; Kolesnikov, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-55a424ad1462dbf1d9849caead786e3a1b78f63b3f9964f4481a185ce3dcdaf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Homology</topic><topic>Modules</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alhussein, H.</creatorcontrib><creatorcontrib>Kolesnikov, P.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alhussein, H.</au><au>Kolesnikov, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hochschild cohomology of the Weyl conformal algebra with coefficients in finite modules</atitle><jtitle>Journal of mathematical physics</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>64</volume><issue>4</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>In this work, we find Hochschild cohomology groups of the Weyl associative conformal algebra with coefficients in all finite modules. The Weyl conformal algebra is the universal associative conformal envelope of the Virasoro Lie conformal algebra relative to the locality N = 2. In order to obtain this result, we adjust the algebraic discrete Morse theory to the case of differential algebras.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0146223</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7534-1534</orcidid><orcidid>https://orcid.org/0000-0002-8093-756X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2023-04, Vol.64 (4) |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0146223 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Algebra Homology Modules Physics |
title | Hochschild cohomology of the Weyl conformal algebra with coefficients in finite modules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A22%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hochschild%20cohomology%20of%20the%20Weyl%20conformal%20algebra%20with%20coefficients%20in%20finite%20modules&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Alhussein,%20H.&rft.date=2023-04-01&rft.volume=64&rft.issue=4&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0146223&rft_dat=%3Cproquest_scita%3E2795811262%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2795811262&rft_id=info:pmid/&rfr_iscdi=true |