The Ferris ferromagnetic resonance technique: Principles and applications

Measurements of ferromagnetic resonance (FMR) are pivotal to modern magnetism and spintronics. Recently, we reported on the Ferris FMR technique, which relies on large-amplitude modulation of the externally applied magnetic field. It was shown to benefit from high sensitivity while being broadband....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2023-06, Vol.13 (6)
Hauptverfasser: Rothschild, Amit, Assouline, Benjamin, Shalom, Nadav Am, Bernstein, Nirel, Daniel, Goni, Cohen, Gil, Capua, Amir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title AIP advances
container_volume 13
creator Rothschild, Amit
Assouline, Benjamin
Shalom, Nadav Am
Bernstein, Nirel
Daniel, Goni
Cohen, Gil
Capua, Amir
description Measurements of ferromagnetic resonance (FMR) are pivotal to modern magnetism and spintronics. Recently, we reported on the Ferris FMR technique, which relies on large-amplitude modulation of the externally applied magnetic field. It was shown to benefit from high sensitivity while being broadband. The Ferris FMR also expanded the resonance linewidth such that the sensitivity to spin currents was enhanced as well. Eventually, the spin Hall angle (θSH) was measurable even in wafer-level measurements that require low current densities to reduce the Joule heating. Despite the various advantages, analysis of the Ferris FMR response is limited to numerical modeling, where the linewidth depends on multiple factors such as the field modulation profile and the magnetization saturation. Here, we describe, in detail, the basic principles of operation of the Ferris FMR and discuss its applicability and engineering considerations. We demonstrated these principles in a measurement of the orbital Hall effect taking place in Cu using an Au layer as the orbital-to-spin current converter. This illustrates the potential of the Ferris FMR for the future development of spintronics technology.
doi_str_mv 10.1063/5.0145498
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0145498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2824123236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-15b2e17ff5d4e17158f5ec9690f1adb6a05622c3bddc837b46dd370d4cb110863</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EElXpwD-wxARSit9J2FBFoVIlGMpsOX5QV6kT7HTg3-M2HZi4y7nDp3vPOQDcYjTHSNBHPkeYcVZXF2BCMK8KSoi4_LNfg1lKO5SH1RhVbAJWm62FSxujT9Bl6fbqK9jBaxht6oIK2sLB6m3w3wf7BD-iD9r3rU1QBQNV37deq8F3Id2AK6faZGdnnYLP5ctm8Vas319Xi-d1oUlVDgXmDbG4dI4bljU7c9zqWtTIYWUaoRAXhGjaGKMrWjZMGENLZJhucLYs6BTcjXf72GVPaZC77hBDfilJRRgmlNAjdT9SOnYpRetkH_1exR-JkTyWJbk8l5XZh5FN2g-nMP_Av161aLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824123236</pqid></control><display><type>article</type><title>The Ferris ferromagnetic resonance technique: Principles and applications</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Rothschild, Amit ; Assouline, Benjamin ; Shalom, Nadav Am ; Bernstein, Nirel ; Daniel, Goni ; Cohen, Gil ; Capua, Amir</creator><creatorcontrib>Rothschild, Amit ; Assouline, Benjamin ; Shalom, Nadav Am ; Bernstein, Nirel ; Daniel, Goni ; Cohen, Gil ; Capua, Amir</creatorcontrib><description>Measurements of ferromagnetic resonance (FMR) are pivotal to modern magnetism and spintronics. Recently, we reported on the Ferris FMR technique, which relies on large-amplitude modulation of the externally applied magnetic field. It was shown to benefit from high sensitivity while being broadband. The Ferris FMR also expanded the resonance linewidth such that the sensitivity to spin currents was enhanced as well. Eventually, the spin Hall angle (θSH) was measurable even in wafer-level measurements that require low current densities to reduce the Joule heating. Despite the various advantages, analysis of the Ferris FMR response is limited to numerical modeling, where the linewidth depends on multiple factors such as the field modulation profile and the magnetization saturation. Here, we describe, in detail, the basic principles of operation of the Ferris FMR and discuss its applicability and engineering considerations. We demonstrated these principles in a measurement of the orbital Hall effect taking place in Cu using an Au layer as the orbital-to-spin current converter. This illustrates the potential of the Ferris FMR for the future development of spintronics technology.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0145498</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Amplitude modulation ; Broadband ; Copper ; Current converters (AC to DC) ; Ferromagnetic resonance ; Ferromagnetism ; Gold ; Hall effect ; Low currents ; Numerical models ; Ohmic dissipation ; Principles ; Resistance heating ; Sensitivity ; Spintronics</subject><ispartof>AIP advances, 2023-06, Vol.13 (6)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-15b2e17ff5d4e17158f5ec9690f1adb6a05622c3bddc837b46dd370d4cb110863</cites><orcidid>0000-0001-5418-9038 ; 0000-0001-6948-0063 ; 0000-0001-7607-9497 ; 0000-0001-6492-6206 ; 0000-0001-6216-3057</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Rothschild, Amit</creatorcontrib><creatorcontrib>Assouline, Benjamin</creatorcontrib><creatorcontrib>Shalom, Nadav Am</creatorcontrib><creatorcontrib>Bernstein, Nirel</creatorcontrib><creatorcontrib>Daniel, Goni</creatorcontrib><creatorcontrib>Cohen, Gil</creatorcontrib><creatorcontrib>Capua, Amir</creatorcontrib><title>The Ferris ferromagnetic resonance technique: Principles and applications</title><title>AIP advances</title><description>Measurements of ferromagnetic resonance (FMR) are pivotal to modern magnetism and spintronics. Recently, we reported on the Ferris FMR technique, which relies on large-amplitude modulation of the externally applied magnetic field. It was shown to benefit from high sensitivity while being broadband. The Ferris FMR also expanded the resonance linewidth such that the sensitivity to spin currents was enhanced as well. Eventually, the spin Hall angle (θSH) was measurable even in wafer-level measurements that require low current densities to reduce the Joule heating. Despite the various advantages, analysis of the Ferris FMR response is limited to numerical modeling, where the linewidth depends on multiple factors such as the field modulation profile and the magnetization saturation. Here, we describe, in detail, the basic principles of operation of the Ferris FMR and discuss its applicability and engineering considerations. We demonstrated these principles in a measurement of the orbital Hall effect taking place in Cu using an Au layer as the orbital-to-spin current converter. This illustrates the potential of the Ferris FMR for the future development of spintronics technology.</description><subject>Amplitude modulation</subject><subject>Broadband</subject><subject>Copper</subject><subject>Current converters (AC to DC)</subject><subject>Ferromagnetic resonance</subject><subject>Ferromagnetism</subject><subject>Gold</subject><subject>Hall effect</subject><subject>Low currents</subject><subject>Numerical models</subject><subject>Ohmic dissipation</subject><subject>Principles</subject><subject>Resistance heating</subject><subject>Sensitivity</subject><subject>Spintronics</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EElXpwD-wxARSit9J2FBFoVIlGMpsOX5QV6kT7HTg3-M2HZi4y7nDp3vPOQDcYjTHSNBHPkeYcVZXF2BCMK8KSoi4_LNfg1lKO5SH1RhVbAJWm62FSxujT9Bl6fbqK9jBaxht6oIK2sLB6m3w3wf7BD-iD9r3rU1QBQNV37deq8F3Id2AK6faZGdnnYLP5ctm8Vas319Xi-d1oUlVDgXmDbG4dI4bljU7c9zqWtTIYWUaoRAXhGjaGKMrWjZMGENLZJhucLYs6BTcjXf72GVPaZC77hBDfilJRRgmlNAjdT9SOnYpRetkH_1exR-JkTyWJbk8l5XZh5FN2g-nMP_Av161aLw</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Rothschild, Amit</creator><creator>Assouline, Benjamin</creator><creator>Shalom, Nadav Am</creator><creator>Bernstein, Nirel</creator><creator>Daniel, Goni</creator><creator>Cohen, Gil</creator><creator>Capua, Amir</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5418-9038</orcidid><orcidid>https://orcid.org/0000-0001-6948-0063</orcidid><orcidid>https://orcid.org/0000-0001-7607-9497</orcidid><orcidid>https://orcid.org/0000-0001-6492-6206</orcidid><orcidid>https://orcid.org/0000-0001-6216-3057</orcidid></search><sort><creationdate>20230601</creationdate><title>The Ferris ferromagnetic resonance technique: Principles and applications</title><author>Rothschild, Amit ; Assouline, Benjamin ; Shalom, Nadav Am ; Bernstein, Nirel ; Daniel, Goni ; Cohen, Gil ; Capua, Amir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-15b2e17ff5d4e17158f5ec9690f1adb6a05622c3bddc837b46dd370d4cb110863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amplitude modulation</topic><topic>Broadband</topic><topic>Copper</topic><topic>Current converters (AC to DC)</topic><topic>Ferromagnetic resonance</topic><topic>Ferromagnetism</topic><topic>Gold</topic><topic>Hall effect</topic><topic>Low currents</topic><topic>Numerical models</topic><topic>Ohmic dissipation</topic><topic>Principles</topic><topic>Resistance heating</topic><topic>Sensitivity</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rothschild, Amit</creatorcontrib><creatorcontrib>Assouline, Benjamin</creatorcontrib><creatorcontrib>Shalom, Nadav Am</creatorcontrib><creatorcontrib>Bernstein, Nirel</creatorcontrib><creatorcontrib>Daniel, Goni</creatorcontrib><creatorcontrib>Cohen, Gil</creatorcontrib><creatorcontrib>Capua, Amir</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rothschild, Amit</au><au>Assouline, Benjamin</au><au>Shalom, Nadav Am</au><au>Bernstein, Nirel</au><au>Daniel, Goni</au><au>Cohen, Gil</au><au>Capua, Amir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Ferris ferromagnetic resonance technique: Principles and applications</atitle><jtitle>AIP advances</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>13</volume><issue>6</issue><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Measurements of ferromagnetic resonance (FMR) are pivotal to modern magnetism and spintronics. Recently, we reported on the Ferris FMR technique, which relies on large-amplitude modulation of the externally applied magnetic field. It was shown to benefit from high sensitivity while being broadband. The Ferris FMR also expanded the resonance linewidth such that the sensitivity to spin currents was enhanced as well. Eventually, the spin Hall angle (θSH) was measurable even in wafer-level measurements that require low current densities to reduce the Joule heating. Despite the various advantages, analysis of the Ferris FMR response is limited to numerical modeling, where the linewidth depends on multiple factors such as the field modulation profile and the magnetization saturation. Here, we describe, in detail, the basic principles of operation of the Ferris FMR and discuss its applicability and engineering considerations. We demonstrated these principles in a measurement of the orbital Hall effect taking place in Cu using an Au layer as the orbital-to-spin current converter. This illustrates the potential of the Ferris FMR for the future development of spintronics technology.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0145498</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-5418-9038</orcidid><orcidid>https://orcid.org/0000-0001-6948-0063</orcidid><orcidid>https://orcid.org/0000-0001-7607-9497</orcidid><orcidid>https://orcid.org/0000-0001-6492-6206</orcidid><orcidid>https://orcid.org/0000-0001-6216-3057</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2023-06, Vol.13 (6)
issn 2158-3226
2158-3226
language eng
recordid cdi_scitation_primary_10_1063_5_0145498
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amplitude modulation
Broadband
Copper
Current converters (AC to DC)
Ferromagnetic resonance
Ferromagnetism
Gold
Hall effect
Low currents
Numerical models
Ohmic dissipation
Principles
Resistance heating
Sensitivity
Spintronics
title The Ferris ferromagnetic resonance technique: Principles and applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A56%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Ferris%20ferromagnetic%20resonance%20technique:%20Principles%20and%20applications&rft.jtitle=AIP%20advances&rft.au=Rothschild,%20Amit&rft.date=2023-06-01&rft.volume=13&rft.issue=6&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0145498&rft_dat=%3Cproquest_scita%3E2824123236%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2824123236&rft_id=info:pmid/&rfr_iscdi=true