Faithful guiding-center orbits in an axisymmetric magnetic field

The problem of the charged-particle motion in an axisymmetric magnetic geometry is used to assess the validity of higher-order Hamiltonian guiding-center theory, which includes higher-order corrections associated with gyrogauge invariance as well as guiding-center polarization induced by magnetic-fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2023-04, Vol.30 (4)
Hauptverfasser: Brizard, Alain J., Hodgeman, Brook C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Physics of plasmas
container_volume 30
creator Brizard, Alain J.
Hodgeman, Brook C.
description The problem of the charged-particle motion in an axisymmetric magnetic geometry is used to assess the validity of higher-order Hamiltonian guiding-center theory, which includes higher-order corrections associated with gyrogauge invariance as well as guiding-center polarization induced by magnetic-field non-uniformity. Two axisymmetric magnetic geometries are considered: a magnetic mirror geometry and a simple tokamak geometry. When a magnetically confined charged-particle orbit is regular (i.e., its guiding-center magnetic moment is adiabatically invariant), the guiding-center approximation, which conserves both energy and azimuthal canonical angular momentum, is shown to be faithful to the particle orbit when higher-order corrections are taken into account.
doi_str_mv 10.1063/5.0145035
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0145035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2806234195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-1e1df7c337ce9ebd2a3b7944b42cd07a026ea324ffc2d0ebc048112c1ff4953f3</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX-w4Elh6-Rjk92bUqwKBS8K3kI2O6kp3d2aZMH--25pz8LAvIeHGXgJuaUwoyD5YzEDKgrgxRmZUCirXEklzg9ZQS6l-L4kVzGuAUDIopyQp4Xx6ccNm2w1-MZ3q9xilzBkfah9ipnvMjPOn4-7tsUUvM1as-owjcF53DTX5MKZTcSb056Sr8XL5_wtX368vs-fl7nlTKWcIm2cspwrixXWDTO8VpUQtWC2AWWASTScCecsawBrC6KklFnqnKgK7viU3B3vbkP_O2BMet0PoRtfalaCZFzQ0U3J_VHZ0McY0Olt8K0JO01BHwrShT4VNNqHo43WJ5N83_2D93v2ZRM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806234195</pqid></control><display><type>article</type><title>Faithful guiding-center orbits in an axisymmetric magnetic field</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Brizard, Alain J. ; Hodgeman, Brook C.</creator><creatorcontrib>Brizard, Alain J. ; Hodgeman, Brook C.</creatorcontrib><description>The problem of the charged-particle motion in an axisymmetric magnetic geometry is used to assess the validity of higher-order Hamiltonian guiding-center theory, which includes higher-order corrections associated with gyrogauge invariance as well as guiding-center polarization induced by magnetic-field non-uniformity. Two axisymmetric magnetic geometries are considered: a magnetic mirror geometry and a simple tokamak geometry. When a magnetically confined charged-particle orbit is regular (i.e., its guiding-center magnetic moment is adiabatically invariant), the guiding-center approximation, which conserves both energy and azimuthal canonical angular momentum, is shown to be faithful to the particle orbit when higher-order corrections are taken into account.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0145035</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Angular momentum ; Magnetic mirrors ; Magnetic moments ; Nonuniformity ; Plasma physics</subject><ispartof>Physics of plasmas, 2023-04, Vol.30 (4)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-1e1df7c337ce9ebd2a3b7944b42cd07a026ea324ffc2d0ebc048112c1ff4953f3</citedby><cites>FETCH-LOGICAL-c327t-1e1df7c337ce9ebd2a3b7944b42cd07a026ea324ffc2d0ebc048112c1ff4953f3</cites><orcidid>0000-0003-3016-7816 ; 0000-0002-0192-6273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0145035$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4510,27923,27924,76155</link.rule.ids></links><search><creatorcontrib>Brizard, Alain J.</creatorcontrib><creatorcontrib>Hodgeman, Brook C.</creatorcontrib><title>Faithful guiding-center orbits in an axisymmetric magnetic field</title><title>Physics of plasmas</title><description>The problem of the charged-particle motion in an axisymmetric magnetic geometry is used to assess the validity of higher-order Hamiltonian guiding-center theory, which includes higher-order corrections associated with gyrogauge invariance as well as guiding-center polarization induced by magnetic-field non-uniformity. Two axisymmetric magnetic geometries are considered: a magnetic mirror geometry and a simple tokamak geometry. When a magnetically confined charged-particle orbit is regular (i.e., its guiding-center magnetic moment is adiabatically invariant), the guiding-center approximation, which conserves both energy and azimuthal canonical angular momentum, is shown to be faithful to the particle orbit when higher-order corrections are taken into account.</description><subject>Angular momentum</subject><subject>Magnetic mirrors</subject><subject>Magnetic moments</subject><subject>Nonuniformity</subject><subject>Plasma physics</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX-w4Elh6-Rjk92bUqwKBS8K3kI2O6kp3d2aZMH--25pz8LAvIeHGXgJuaUwoyD5YzEDKgrgxRmZUCirXEklzg9ZQS6l-L4kVzGuAUDIopyQp4Xx6ccNm2w1-MZ3q9xilzBkfah9ipnvMjPOn4-7tsUUvM1as-owjcF53DTX5MKZTcSb056Sr8XL5_wtX368vs-fl7nlTKWcIm2cspwrixXWDTO8VpUQtWC2AWWASTScCecsawBrC6KklFnqnKgK7viU3B3vbkP_O2BMet0PoRtfalaCZFzQ0U3J_VHZ0McY0Olt8K0JO01BHwrShT4VNNqHo43WJ5N83_2D93v2ZRM</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Brizard, Alain J.</creator><creator>Hodgeman, Brook C.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3016-7816</orcidid><orcidid>https://orcid.org/0000-0002-0192-6273</orcidid></search><sort><creationdate>202304</creationdate><title>Faithful guiding-center orbits in an axisymmetric magnetic field</title><author>Brizard, Alain J. ; Hodgeman, Brook C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-1e1df7c337ce9ebd2a3b7944b42cd07a026ea324ffc2d0ebc048112c1ff4953f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Angular momentum</topic><topic>Magnetic mirrors</topic><topic>Magnetic moments</topic><topic>Nonuniformity</topic><topic>Plasma physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brizard, Alain J.</creatorcontrib><creatorcontrib>Hodgeman, Brook C.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brizard, Alain J.</au><au>Hodgeman, Brook C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Faithful guiding-center orbits in an axisymmetric magnetic field</atitle><jtitle>Physics of plasmas</jtitle><date>2023-04</date><risdate>2023</risdate><volume>30</volume><issue>4</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>The problem of the charged-particle motion in an axisymmetric magnetic geometry is used to assess the validity of higher-order Hamiltonian guiding-center theory, which includes higher-order corrections associated with gyrogauge invariance as well as guiding-center polarization induced by magnetic-field non-uniformity. Two axisymmetric magnetic geometries are considered: a magnetic mirror geometry and a simple tokamak geometry. When a magnetically confined charged-particle orbit is regular (i.e., its guiding-center magnetic moment is adiabatically invariant), the guiding-center approximation, which conserves both energy and azimuthal canonical angular momentum, is shown to be faithful to the particle orbit when higher-order corrections are taken into account.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0145035</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3016-7816</orcidid><orcidid>https://orcid.org/0000-0002-0192-6273</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2023-04, Vol.30 (4)
issn 1070-664X
1089-7674
language eng
recordid cdi_scitation_primary_10_1063_5_0145035
source AIP Journals Complete; Alma/SFX Local Collection
subjects Angular momentum
Magnetic mirrors
Magnetic moments
Nonuniformity
Plasma physics
title Faithful guiding-center orbits in an axisymmetric magnetic field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A55%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Faithful%20guiding-center%20orbits%20in%20an%20axisymmetric%20magnetic%20field&rft.jtitle=Physics%20of%20plasmas&rft.au=Brizard,%20Alain%20J.&rft.date=2023-04&rft.volume=30&rft.issue=4&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0145035&rft_dat=%3Cproquest_scita%3E2806234195%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806234195&rft_id=info:pmid/&rfr_iscdi=true