Optimal interpolation formulas exact for trigonometric functions
In the present paper we investigate the problem of construction of the optimal interpolation formulas in the space K2(P2). We find the norm of the error functional which gives the upper bound for the error of the interpolation formulas in the space K2(P2). Further, we get the system of linear equati...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2781 |
creator | Babaev, Samandar S. Davronov, Javlon R. Abdullaev, Abdulla Polvonov, Sarvarbek Z. |
description | In the present paper we investigate the problem of construction of the optimal interpolation formulas in the space K2(P2). We find the norm of the error functional which gives the upper bound for the error of the interpolation formulas in the space K2(P2). Further, we get the system of linear equations for coefficients of the optimal interpolation formulas. Finally, using the discrete analogue of the differential operatord4dx4+2ω2d2dx2+ω4 and its properties we find explicit formulas for the coefficients of the optimal interpolation formulas. |
doi_str_mv | 10.1063/5.0144754 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0144754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2823741914</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-7a0193c92294bd6590886255d26a8fb2ca125646337ffd8732e5f8f094eaa513</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKsL_8GAO2Fqbt7ZKcUXFLrpwl1IZxKZMjMZk4zov3dqC-5cnXvg4957DkLXgBeABb3jCwyMSc5O0Aw4h1IKEKdohrFmJWH07RxdpLTDmGgp1Qzdr4fcdLYtmj67OITW5ib0hQ-xG1ubCvdlq7y3RY7Ne-hD56ahKvzYV3syXaIzb9vkro46R5unx83ypVytn1-XD6tyAKFyKS0GTStNiGbbWnCNlRKE85oIq_yWVBYIF0xQKr2vlaTEca_89LWzlgOdo5vD2iGGj9GlbHZhjP100RBFqGSggU3U7YFKVZN_k5ghTvHitwFs9gUZbo4F_Qd_hvgHmqH29AegumZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2823741914</pqid></control><display><type>conference_proceeding</type><title>Optimal interpolation formulas exact for trigonometric functions</title><source>AIP Journals Complete</source><creator>Babaev, Samandar S. ; Davronov, Javlon R. ; Abdullaev, Abdulla ; Polvonov, Sarvarbek Z.</creator><contributor>Karimov, Erkinjon ; Erdogan, Abdullah S. ; Khudoyberdiyev, Abror ; Ashyralyyev, Charyyar ; Kabulov, Anvar ; Aripov, Mersaid ; Ashyralyev, Allaberen</contributor><creatorcontrib>Babaev, Samandar S. ; Davronov, Javlon R. ; Abdullaev, Abdulla ; Polvonov, Sarvarbek Z. ; Karimov, Erkinjon ; Erdogan, Abdullah S. ; Khudoyberdiyev, Abror ; Ashyralyyev, Charyyar ; Kabulov, Anvar ; Aripov, Mersaid ; Ashyralyev, Allaberen</creatorcontrib><description>In the present paper we investigate the problem of construction of the optimal interpolation formulas in the space K2(P2). We find the norm of the error functional which gives the upper bound for the error of the interpolation formulas in the space K2(P2). Further, we get the system of linear equations for coefficients of the optimal interpolation formulas. Finally, using the discrete analogue of the differential operatord4dx4+2ω2d2dx2+ω4 and its properties we find explicit formulas for the coefficients of the optimal interpolation formulas.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0144754</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Differential equations ; Interpolation ; Linear equations ; Operators (mathematics) ; Trigonometric functions ; Upper bounds</subject><ispartof>AIP Conference Proceedings, 2023, Vol.2781 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0144754$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Karimov, Erkinjon</contributor><contributor>Erdogan, Abdullah S.</contributor><contributor>Khudoyberdiyev, Abror</contributor><contributor>Ashyralyyev, Charyyar</contributor><contributor>Kabulov, Anvar</contributor><contributor>Aripov, Mersaid</contributor><contributor>Ashyralyev, Allaberen</contributor><creatorcontrib>Babaev, Samandar S.</creatorcontrib><creatorcontrib>Davronov, Javlon R.</creatorcontrib><creatorcontrib>Abdullaev, Abdulla</creatorcontrib><creatorcontrib>Polvonov, Sarvarbek Z.</creatorcontrib><title>Optimal interpolation formulas exact for trigonometric functions</title><title>AIP Conference Proceedings</title><description>In the present paper we investigate the problem of construction of the optimal interpolation formulas in the space K2(P2). We find the norm of the error functional which gives the upper bound for the error of the interpolation formulas in the space K2(P2). Further, we get the system of linear equations for coefficients of the optimal interpolation formulas. Finally, using the discrete analogue of the differential operatord4dx4+2ω2d2dx2+ω4 and its properties we find explicit formulas for the coefficients of the optimal interpolation formulas.</description><subject>Differential equations</subject><subject>Interpolation</subject><subject>Linear equations</subject><subject>Operators (mathematics)</subject><subject>Trigonometric functions</subject><subject>Upper bounds</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEtLAzEUhYMoWKsL_8GAO2Fqbt7ZKcUXFLrpwl1IZxKZMjMZk4zov3dqC-5cnXvg4957DkLXgBeABb3jCwyMSc5O0Aw4h1IKEKdohrFmJWH07RxdpLTDmGgp1Qzdr4fcdLYtmj67OITW5ib0hQ-xG1ubCvdlq7y3RY7Ne-hD56ahKvzYV3syXaIzb9vkro46R5unx83ypVytn1-XD6tyAKFyKS0GTStNiGbbWnCNlRKE85oIq_yWVBYIF0xQKr2vlaTEca_89LWzlgOdo5vD2iGGj9GlbHZhjP100RBFqGSggU3U7YFKVZN_k5ghTvHitwFs9gUZbo4F_Qd_hvgHmqH29AegumZA</recordid><startdate>20230608</startdate><enddate>20230608</enddate><creator>Babaev, Samandar S.</creator><creator>Davronov, Javlon R.</creator><creator>Abdullaev, Abdulla</creator><creator>Polvonov, Sarvarbek Z.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230608</creationdate><title>Optimal interpolation formulas exact for trigonometric functions</title><author>Babaev, Samandar S. ; Davronov, Javlon R. ; Abdullaev, Abdulla ; Polvonov, Sarvarbek Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-7a0193c92294bd6590886255d26a8fb2ca125646337ffd8732e5f8f094eaa513</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Differential equations</topic><topic>Interpolation</topic><topic>Linear equations</topic><topic>Operators (mathematics)</topic><topic>Trigonometric functions</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babaev, Samandar S.</creatorcontrib><creatorcontrib>Davronov, Javlon R.</creatorcontrib><creatorcontrib>Abdullaev, Abdulla</creatorcontrib><creatorcontrib>Polvonov, Sarvarbek Z.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babaev, Samandar S.</au><au>Davronov, Javlon R.</au><au>Abdullaev, Abdulla</au><au>Polvonov, Sarvarbek Z.</au><au>Karimov, Erkinjon</au><au>Erdogan, Abdullah S.</au><au>Khudoyberdiyev, Abror</au><au>Ashyralyyev, Charyyar</au><au>Kabulov, Anvar</au><au>Aripov, Mersaid</au><au>Ashyralyev, Allaberen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal interpolation formulas exact for trigonometric functions</atitle><btitle>AIP Conference Proceedings</btitle><date>2023-06-08</date><risdate>2023</risdate><volume>2781</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In the present paper we investigate the problem of construction of the optimal interpolation formulas in the space K2(P2). We find the norm of the error functional which gives the upper bound for the error of the interpolation formulas in the space K2(P2). Further, we get the system of linear equations for coefficients of the optimal interpolation formulas. Finally, using the discrete analogue of the differential operatord4dx4+2ω2d2dx2+ω4 and its properties we find explicit formulas for the coefficients of the optimal interpolation formulas.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0144754</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2023, Vol.2781 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0144754 |
source | AIP Journals Complete |
subjects | Differential equations Interpolation Linear equations Operators (mathematics) Trigonometric functions Upper bounds |
title | Optimal interpolation formulas exact for trigonometric functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A36%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20interpolation%20formulas%20exact%20for%20trigonometric%20functions&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Babaev,%20Samandar%20S.&rft.date=2023-06-08&rft.volume=2781&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0144754&rft_dat=%3Cproquest_scita%3E2823741914%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2823741914&rft_id=info:pmid/&rfr_iscdi=true |