Optimal interpolation formulas exact for trigonometric functions

In the present paper we investigate the problem of construction of the optimal interpolation formulas in the space K2(P2). We find the norm of the error functional which gives the upper bound for the error of the interpolation formulas in the space K2(P2). Further, we get the system of linear equati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Babaev, Samandar S., Davronov, Javlon R., Abdullaev, Abdulla, Polvonov, Sarvarbek Z.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2781
creator Babaev, Samandar S.
Davronov, Javlon R.
Abdullaev, Abdulla
Polvonov, Sarvarbek Z.
description In the present paper we investigate the problem of construction of the optimal interpolation formulas in the space K2(P2). We find the norm of the error functional which gives the upper bound for the error of the interpolation formulas in the space K2(P2). Further, we get the system of linear equations for coefficients of the optimal interpolation formulas. Finally, using the discrete analogue of the differential operatord4dx4+2ω2d2dx2+ω4 and its properties we find explicit formulas for the coefficients of the optimal interpolation formulas.
doi_str_mv 10.1063/5.0144754
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0144754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2823741914</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-7a0193c92294bd6590886255d26a8fb2ca125646337ffd8732e5f8f094eaa513</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKsL_8GAO2Fqbt7ZKcUXFLrpwl1IZxKZMjMZk4zov3dqC-5cnXvg4957DkLXgBeABb3jCwyMSc5O0Aw4h1IKEKdohrFmJWH07RxdpLTDmGgp1Qzdr4fcdLYtmj67OITW5ib0hQ-xG1ubCvdlq7y3RY7Ne-hD56ahKvzYV3syXaIzb9vkro46R5unx83ypVytn1-XD6tyAKFyKS0GTStNiGbbWnCNlRKE85oIq_yWVBYIF0xQKr2vlaTEca_89LWzlgOdo5vD2iGGj9GlbHZhjP100RBFqGSggU3U7YFKVZN_k5ghTvHitwFs9gUZbo4F_Qd_hvgHmqH29AegumZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2823741914</pqid></control><display><type>conference_proceeding</type><title>Optimal interpolation formulas exact for trigonometric functions</title><source>AIP Journals Complete</source><creator>Babaev, Samandar S. ; Davronov, Javlon R. ; Abdullaev, Abdulla ; Polvonov, Sarvarbek Z.</creator><contributor>Karimov, Erkinjon ; Erdogan, Abdullah S. ; Khudoyberdiyev, Abror ; Ashyralyyev, Charyyar ; Kabulov, Anvar ; Aripov, Mersaid ; Ashyralyev, Allaberen</contributor><creatorcontrib>Babaev, Samandar S. ; Davronov, Javlon R. ; Abdullaev, Abdulla ; Polvonov, Sarvarbek Z. ; Karimov, Erkinjon ; Erdogan, Abdullah S. ; Khudoyberdiyev, Abror ; Ashyralyyev, Charyyar ; Kabulov, Anvar ; Aripov, Mersaid ; Ashyralyev, Allaberen</creatorcontrib><description>In the present paper we investigate the problem of construction of the optimal interpolation formulas in the space K2(P2). We find the norm of the error functional which gives the upper bound for the error of the interpolation formulas in the space K2(P2). Further, we get the system of linear equations for coefficients of the optimal interpolation formulas. Finally, using the discrete analogue of the differential operatord4dx4+2ω2d2dx2+ω4 and its properties we find explicit formulas for the coefficients of the optimal interpolation formulas.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0144754</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Differential equations ; Interpolation ; Linear equations ; Operators (mathematics) ; Trigonometric functions ; Upper bounds</subject><ispartof>AIP Conference Proceedings, 2023, Vol.2781 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0144754$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Karimov, Erkinjon</contributor><contributor>Erdogan, Abdullah S.</contributor><contributor>Khudoyberdiyev, Abror</contributor><contributor>Ashyralyyev, Charyyar</contributor><contributor>Kabulov, Anvar</contributor><contributor>Aripov, Mersaid</contributor><contributor>Ashyralyev, Allaberen</contributor><creatorcontrib>Babaev, Samandar S.</creatorcontrib><creatorcontrib>Davronov, Javlon R.</creatorcontrib><creatorcontrib>Abdullaev, Abdulla</creatorcontrib><creatorcontrib>Polvonov, Sarvarbek Z.</creatorcontrib><title>Optimal interpolation formulas exact for trigonometric functions</title><title>AIP Conference Proceedings</title><description>In the present paper we investigate the problem of construction of the optimal interpolation formulas in the space K2(P2). We find the norm of the error functional which gives the upper bound for the error of the interpolation formulas in the space K2(P2). Further, we get the system of linear equations for coefficients of the optimal interpolation formulas. Finally, using the discrete analogue of the differential operatord4dx4+2ω2d2dx2+ω4 and its properties we find explicit formulas for the coefficients of the optimal interpolation formulas.</description><subject>Differential equations</subject><subject>Interpolation</subject><subject>Linear equations</subject><subject>Operators (mathematics)</subject><subject>Trigonometric functions</subject><subject>Upper bounds</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kEtLAzEUhYMoWKsL_8GAO2Fqbt7ZKcUXFLrpwl1IZxKZMjMZk4zov3dqC-5cnXvg4957DkLXgBeABb3jCwyMSc5O0Aw4h1IKEKdohrFmJWH07RxdpLTDmGgp1Qzdr4fcdLYtmj67OITW5ib0hQ-xG1ubCvdlq7y3RY7Ne-hD56ahKvzYV3syXaIzb9vkro46R5unx83ypVytn1-XD6tyAKFyKS0GTStNiGbbWnCNlRKE85oIq_yWVBYIF0xQKr2vlaTEca_89LWzlgOdo5vD2iGGj9GlbHZhjP100RBFqGSggU3U7YFKVZN_k5ghTvHitwFs9gUZbo4F_Qd_hvgHmqH29AegumZA</recordid><startdate>20230608</startdate><enddate>20230608</enddate><creator>Babaev, Samandar S.</creator><creator>Davronov, Javlon R.</creator><creator>Abdullaev, Abdulla</creator><creator>Polvonov, Sarvarbek Z.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230608</creationdate><title>Optimal interpolation formulas exact for trigonometric functions</title><author>Babaev, Samandar S. ; Davronov, Javlon R. ; Abdullaev, Abdulla ; Polvonov, Sarvarbek Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-7a0193c92294bd6590886255d26a8fb2ca125646337ffd8732e5f8f094eaa513</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Differential equations</topic><topic>Interpolation</topic><topic>Linear equations</topic><topic>Operators (mathematics)</topic><topic>Trigonometric functions</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babaev, Samandar S.</creatorcontrib><creatorcontrib>Davronov, Javlon R.</creatorcontrib><creatorcontrib>Abdullaev, Abdulla</creatorcontrib><creatorcontrib>Polvonov, Sarvarbek Z.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babaev, Samandar S.</au><au>Davronov, Javlon R.</au><au>Abdullaev, Abdulla</au><au>Polvonov, Sarvarbek Z.</au><au>Karimov, Erkinjon</au><au>Erdogan, Abdullah S.</au><au>Khudoyberdiyev, Abror</au><au>Ashyralyyev, Charyyar</au><au>Kabulov, Anvar</au><au>Aripov, Mersaid</au><au>Ashyralyev, Allaberen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal interpolation formulas exact for trigonometric functions</atitle><btitle>AIP Conference Proceedings</btitle><date>2023-06-08</date><risdate>2023</risdate><volume>2781</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In the present paper we investigate the problem of construction of the optimal interpolation formulas in the space K2(P2). We find the norm of the error functional which gives the upper bound for the error of the interpolation formulas in the space K2(P2). Further, we get the system of linear equations for coefficients of the optimal interpolation formulas. Finally, using the discrete analogue of the differential operatord4dx4+2ω2d2dx2+ω4 and its properties we find explicit formulas for the coefficients of the optimal interpolation formulas.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0144754</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2023, Vol.2781 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0144754
source AIP Journals Complete
subjects Differential equations
Interpolation
Linear equations
Operators (mathematics)
Trigonometric functions
Upper bounds
title Optimal interpolation formulas exact for trigonometric functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A36%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20interpolation%20formulas%20exact%20for%20trigonometric%20functions&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Babaev,%20Samandar%20S.&rft.date=2023-06-08&rft.volume=2781&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0144754&rft_dat=%3Cproquest_scita%3E2823741914%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2823741914&rft_id=info:pmid/&rfr_iscdi=true