Prediction of glassy silica etching with hydrogen fluoride gas by kinetic Monte Carlo simulations
Understanding the surface properties of glass during the hydrogen fluoride (HF)-based vapor etching process is essential to optimize treatment processes in semiconductor and glass industries. In this work, we investigate an etching process of fused glassy silica by HF gas with kinetic Monte Carlo (K...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2023-03, Vol.158 (9), p.094709-094709 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 094709 |
---|---|
container_issue | 9 |
container_start_page | 094709 |
container_title | The Journal of chemical physics |
container_volume | 158 |
creator | Park, Hyunhang Antony, Andrew C. Banerjee, Joy Smith, Nicholas J. Agnello, Gabriel |
description | Understanding the surface properties of glass during the hydrogen fluoride (HF)-based vapor etching process is essential to optimize treatment processes in semiconductor and glass industries. In this work, we investigate an etching process of fused glassy silica by HF gas with kinetic Monte Carlo (KMC) simulations. Detailed pathways of surface reactions between gas molecules and the silica surface with activation energy sets are explicitly implemented in the KMC algorithm for both dry and humid conditions. The KMC model successfully describes the etching of the silica surface with the evolution of surface morphology up to the micron regime. The simulation results show that the calculated etch rate and surface roughness are in good agreement with the experimental results, and the effect of humidity on the etch rate is also confirmed. Development of roughness is theoretically analyzed in terms of surface roughening phenomena, and it is predicted that the values of growth and roughening exponents are 0.19 and 0.33, respectively, suggesting that our model belongs to the Kardar–Parisi–Zhang universality class. Furthermore, the temporal evolution of surface chemistry, specifically surface hydroxyls and fluorine groups, is monitored. The surface density of fluorine moieties is 2.5 times higher than that of the hydroxyl groups, implying that the surface is well fluorinated during vapor etching. |
doi_str_mv | 10.1063/5.0141062 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0141062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785200432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-a04851a795a8825ed78a8f587175fc6f639d42f0eb4ff00d780999aec414dfde3</originalsourceid><addsrcrecordid>eNp90E1LwzAcx_Egis7pwTcgAS8qdP7T9CE5yvAJJnrQc8nysGV2zUxape_e1k0FQU8J5MOP8EXoiMCIQEYv0hGQpLvFW2hAgPEozzhsowFATCKeQbaH9kNYAADJ42QX7dGMMc4zOkDi0WtlZW1dhZ3Bs1KE0OJgSysF1rWc22qG3209x_NWeTfTFTZl47xVGs9EwNMWv9hK11bie1fVGo-FL103sGxK0a-GA7RjRBn04eYcoufrq6fxbTR5uLkbX04iSRmtIwEJS4nIeSoYi1OtciaYSVlO8tTIzGSUqyQ2oKeJMQDdM3DOhZYJSZRRmg7R6Xp35d1ro0NdLG2QuixFpV0TijhnaQyQ0LijJ7_owjW-6n7XK-jLcNqps7WS3oXgtSlW3i6FbwsCRd-9SItN984ebxab6VKrb_kVugPnaxCkrT_D_Lv2J35z_gcWK2XoB5S6mPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780996393</pqid></control><display><type>article</type><title>Prediction of glassy silica etching with hydrogen fluoride gas by kinetic Monte Carlo simulations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Park, Hyunhang ; Antony, Andrew C. ; Banerjee, Joy ; Smith, Nicholas J. ; Agnello, Gabriel</creator><creatorcontrib>Park, Hyunhang ; Antony, Andrew C. ; Banerjee, Joy ; Smith, Nicholas J. ; Agnello, Gabriel</creatorcontrib><description>Understanding the surface properties of glass during the hydrogen fluoride (HF)-based vapor etching process is essential to optimize treatment processes in semiconductor and glass industries. In this work, we investigate an etching process of fused glassy silica by HF gas with kinetic Monte Carlo (KMC) simulations. Detailed pathways of surface reactions between gas molecules and the silica surface with activation energy sets are explicitly implemented in the KMC algorithm for both dry and humid conditions. The KMC model successfully describes the etching of the silica surface with the evolution of surface morphology up to the micron regime. The simulation results show that the calculated etch rate and surface roughness are in good agreement with the experimental results, and the effect of humidity on the etch rate is also confirmed. Development of roughness is theoretically analyzed in terms of surface roughening phenomena, and it is predicted that the values of growth and roughening exponents are 0.19 and 0.33, respectively, suggesting that our model belongs to the Kardar–Parisi–Zhang universality class. Furthermore, the temporal evolution of surface chemistry, specifically surface hydroxyls and fluorine groups, is monitored. The surface density of fluorine moieties is 2.5 times higher than that of the hydroxyl groups, implying that the surface is well fluorinated during vapor etching.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0141062</identifier><identifier>PMID: 36889963</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Algorithms ; Computer simulation ; Etching ; Evolution ; Fluorides ; Fluorine ; Hydrogen fluoride ; Hydroxyl groups ; Moisture effects ; Roughening ; Silica glass ; Silicon dioxide ; Surface properties ; Surface reactions ; Surface roughness</subject><ispartof>The Journal of chemical physics, 2023-03, Vol.158 (9), p.094709-094709</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-a04851a795a8825ed78a8f587175fc6f639d42f0eb4ff00d780999aec414dfde3</citedby><cites>FETCH-LOGICAL-c383t-a04851a795a8825ed78a8f587175fc6f639d42f0eb4ff00d780999aec414dfde3</cites><orcidid>0000-0002-8595-4342 ; 0000-0003-1237-2541 ; 0000-0002-8726-9525 ; 0000-0003-0499-3209</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0141062$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36889963$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Hyunhang</creatorcontrib><creatorcontrib>Antony, Andrew C.</creatorcontrib><creatorcontrib>Banerjee, Joy</creatorcontrib><creatorcontrib>Smith, Nicholas J.</creatorcontrib><creatorcontrib>Agnello, Gabriel</creatorcontrib><title>Prediction of glassy silica etching with hydrogen fluoride gas by kinetic Monte Carlo simulations</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Understanding the surface properties of glass during the hydrogen fluoride (HF)-based vapor etching process is essential to optimize treatment processes in semiconductor and glass industries. In this work, we investigate an etching process of fused glassy silica by HF gas with kinetic Monte Carlo (KMC) simulations. Detailed pathways of surface reactions between gas molecules and the silica surface with activation energy sets are explicitly implemented in the KMC algorithm for both dry and humid conditions. The KMC model successfully describes the etching of the silica surface with the evolution of surface morphology up to the micron regime. The simulation results show that the calculated etch rate and surface roughness are in good agreement with the experimental results, and the effect of humidity on the etch rate is also confirmed. Development of roughness is theoretically analyzed in terms of surface roughening phenomena, and it is predicted that the values of growth and roughening exponents are 0.19 and 0.33, respectively, suggesting that our model belongs to the Kardar–Parisi–Zhang universality class. Furthermore, the temporal evolution of surface chemistry, specifically surface hydroxyls and fluorine groups, is monitored. The surface density of fluorine moieties is 2.5 times higher than that of the hydroxyl groups, implying that the surface is well fluorinated during vapor etching.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Etching</subject><subject>Evolution</subject><subject>Fluorides</subject><subject>Fluorine</subject><subject>Hydrogen fluoride</subject><subject>Hydroxyl groups</subject><subject>Moisture effects</subject><subject>Roughening</subject><subject>Silica glass</subject><subject>Silicon dioxide</subject><subject>Surface properties</subject><subject>Surface reactions</subject><subject>Surface roughness</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90E1LwzAcx_Egis7pwTcgAS8qdP7T9CE5yvAJJnrQc8nysGV2zUxape_e1k0FQU8J5MOP8EXoiMCIQEYv0hGQpLvFW2hAgPEozzhsowFATCKeQbaH9kNYAADJ42QX7dGMMc4zOkDi0WtlZW1dhZ3Bs1KE0OJgSysF1rWc22qG3209x_NWeTfTFTZl47xVGs9EwNMWv9hK11bie1fVGo-FL103sGxK0a-GA7RjRBn04eYcoufrq6fxbTR5uLkbX04iSRmtIwEJS4nIeSoYi1OtciaYSVlO8tTIzGSUqyQ2oKeJMQDdM3DOhZYJSZRRmg7R6Xp35d1ro0NdLG2QuixFpV0TijhnaQyQ0LijJ7_owjW-6n7XK-jLcNqps7WS3oXgtSlW3i6FbwsCRd-9SItN984ebxab6VKrb_kVugPnaxCkrT_D_Lv2J35z_gcWK2XoB5S6mPQ</recordid><startdate>20230307</startdate><enddate>20230307</enddate><creator>Park, Hyunhang</creator><creator>Antony, Andrew C.</creator><creator>Banerjee, Joy</creator><creator>Smith, Nicholas J.</creator><creator>Agnello, Gabriel</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8595-4342</orcidid><orcidid>https://orcid.org/0000-0003-1237-2541</orcidid><orcidid>https://orcid.org/0000-0002-8726-9525</orcidid><orcidid>https://orcid.org/0000-0003-0499-3209</orcidid></search><sort><creationdate>20230307</creationdate><title>Prediction of glassy silica etching with hydrogen fluoride gas by kinetic Monte Carlo simulations</title><author>Park, Hyunhang ; Antony, Andrew C. ; Banerjee, Joy ; Smith, Nicholas J. ; Agnello, Gabriel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-a04851a795a8825ed78a8f587175fc6f639d42f0eb4ff00d780999aec414dfde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Etching</topic><topic>Evolution</topic><topic>Fluorides</topic><topic>Fluorine</topic><topic>Hydrogen fluoride</topic><topic>Hydroxyl groups</topic><topic>Moisture effects</topic><topic>Roughening</topic><topic>Silica glass</topic><topic>Silicon dioxide</topic><topic>Surface properties</topic><topic>Surface reactions</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Hyunhang</creatorcontrib><creatorcontrib>Antony, Andrew C.</creatorcontrib><creatorcontrib>Banerjee, Joy</creatorcontrib><creatorcontrib>Smith, Nicholas J.</creatorcontrib><creatorcontrib>Agnello, Gabriel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Hyunhang</au><au>Antony, Andrew C.</au><au>Banerjee, Joy</au><au>Smith, Nicholas J.</au><au>Agnello, Gabriel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of glassy silica etching with hydrogen fluoride gas by kinetic Monte Carlo simulations</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2023-03-07</date><risdate>2023</risdate><volume>158</volume><issue>9</issue><spage>094709</spage><epage>094709</epage><pages>094709-094709</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Understanding the surface properties of glass during the hydrogen fluoride (HF)-based vapor etching process is essential to optimize treatment processes in semiconductor and glass industries. In this work, we investigate an etching process of fused glassy silica by HF gas with kinetic Monte Carlo (KMC) simulations. Detailed pathways of surface reactions between gas molecules and the silica surface with activation energy sets are explicitly implemented in the KMC algorithm for both dry and humid conditions. The KMC model successfully describes the etching of the silica surface with the evolution of surface morphology up to the micron regime. The simulation results show that the calculated etch rate and surface roughness are in good agreement with the experimental results, and the effect of humidity on the etch rate is also confirmed. Development of roughness is theoretically analyzed in terms of surface roughening phenomena, and it is predicted that the values of growth and roughening exponents are 0.19 and 0.33, respectively, suggesting that our model belongs to the Kardar–Parisi–Zhang universality class. Furthermore, the temporal evolution of surface chemistry, specifically surface hydroxyls and fluorine groups, is monitored. The surface density of fluorine moieties is 2.5 times higher than that of the hydroxyl groups, implying that the surface is well fluorinated during vapor etching.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>36889963</pmid><doi>10.1063/5.0141062</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8595-4342</orcidid><orcidid>https://orcid.org/0000-0003-1237-2541</orcidid><orcidid>https://orcid.org/0000-0002-8726-9525</orcidid><orcidid>https://orcid.org/0000-0003-0499-3209</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2023-03, Vol.158 (9), p.094709-094709 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0141062 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Algorithms Computer simulation Etching Evolution Fluorides Fluorine Hydrogen fluoride Hydroxyl groups Moisture effects Roughening Silica glass Silicon dioxide Surface properties Surface reactions Surface roughness |
title | Prediction of glassy silica etching with hydrogen fluoride gas by kinetic Monte Carlo simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A10%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20glassy%20silica%20etching%20with%20hydrogen%20fluoride%20gas%20by%20kinetic%20Monte%20Carlo%20simulations&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Park,%20Hyunhang&rft.date=2023-03-07&rft.volume=158&rft.issue=9&rft.spage=094709&rft.epage=094709&rft.pages=094709-094709&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0141062&rft_dat=%3Cproquest_scita%3E2785200432%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2780996393&rft_id=info:pmid/36889963&rfr_iscdi=true |