Prediction of glassy silica etching with hydrogen fluoride gas by kinetic Monte Carlo simulations

Understanding the surface properties of glass during the hydrogen fluoride (HF)-based vapor etching process is essential to optimize treatment processes in semiconductor and glass industries. In this work, we investigate an etching process of fused glassy silica by HF gas with kinetic Monte Carlo (K...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2023-03, Vol.158 (9), p.094709-094709
Hauptverfasser: Park, Hyunhang, Antony, Andrew C., Banerjee, Joy, Smith, Nicholas J., Agnello, Gabriel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 094709
container_issue 9
container_start_page 094709
container_title The Journal of chemical physics
container_volume 158
creator Park, Hyunhang
Antony, Andrew C.
Banerjee, Joy
Smith, Nicholas J.
Agnello, Gabriel
description Understanding the surface properties of glass during the hydrogen fluoride (HF)-based vapor etching process is essential to optimize treatment processes in semiconductor and glass industries. In this work, we investigate an etching process of fused glassy silica by HF gas with kinetic Monte Carlo (KMC) simulations. Detailed pathways of surface reactions between gas molecules and the silica surface with activation energy sets are explicitly implemented in the KMC algorithm for both dry and humid conditions. The KMC model successfully describes the etching of the silica surface with the evolution of surface morphology up to the micron regime. The simulation results show that the calculated etch rate and surface roughness are in good agreement with the experimental results, and the effect of humidity on the etch rate is also confirmed. Development of roughness is theoretically analyzed in terms of surface roughening phenomena, and it is predicted that the values of growth and roughening exponents are 0.19 and 0.33, respectively, suggesting that our model belongs to the Kardar–Parisi–Zhang universality class. Furthermore, the temporal evolution of surface chemistry, specifically surface hydroxyls and fluorine groups, is monitored. The surface density of fluorine moieties is 2.5 times higher than that of the hydroxyl groups, implying that the surface is well fluorinated during vapor etching.
doi_str_mv 10.1063/5.0141062
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0141062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785200432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-a04851a795a8825ed78a8f587175fc6f639d42f0eb4ff00d780999aec414dfde3</originalsourceid><addsrcrecordid>eNp90E1LwzAcx_Egis7pwTcgAS8qdP7T9CE5yvAJJnrQc8nysGV2zUxape_e1k0FQU8J5MOP8EXoiMCIQEYv0hGQpLvFW2hAgPEozzhsowFATCKeQbaH9kNYAADJ42QX7dGMMc4zOkDi0WtlZW1dhZ3Bs1KE0OJgSysF1rWc22qG3209x_NWeTfTFTZl47xVGs9EwNMWv9hK11bie1fVGo-FL103sGxK0a-GA7RjRBn04eYcoufrq6fxbTR5uLkbX04iSRmtIwEJS4nIeSoYi1OtciaYSVlO8tTIzGSUqyQ2oKeJMQDdM3DOhZYJSZRRmg7R6Xp35d1ro0NdLG2QuixFpV0TijhnaQyQ0LijJ7_owjW-6n7XK-jLcNqps7WS3oXgtSlW3i6FbwsCRd-9SItN984ebxab6VKrb_kVugPnaxCkrT_D_Lv2J35z_gcWK2XoB5S6mPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780996393</pqid></control><display><type>article</type><title>Prediction of glassy silica etching with hydrogen fluoride gas by kinetic Monte Carlo simulations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Park, Hyunhang ; Antony, Andrew C. ; Banerjee, Joy ; Smith, Nicholas J. ; Agnello, Gabriel</creator><creatorcontrib>Park, Hyunhang ; Antony, Andrew C. ; Banerjee, Joy ; Smith, Nicholas J. ; Agnello, Gabriel</creatorcontrib><description>Understanding the surface properties of glass during the hydrogen fluoride (HF)-based vapor etching process is essential to optimize treatment processes in semiconductor and glass industries. In this work, we investigate an etching process of fused glassy silica by HF gas with kinetic Monte Carlo (KMC) simulations. Detailed pathways of surface reactions between gas molecules and the silica surface with activation energy sets are explicitly implemented in the KMC algorithm for both dry and humid conditions. The KMC model successfully describes the etching of the silica surface with the evolution of surface morphology up to the micron regime. The simulation results show that the calculated etch rate and surface roughness are in good agreement with the experimental results, and the effect of humidity on the etch rate is also confirmed. Development of roughness is theoretically analyzed in terms of surface roughening phenomena, and it is predicted that the values of growth and roughening exponents are 0.19 and 0.33, respectively, suggesting that our model belongs to the Kardar–Parisi–Zhang universality class. Furthermore, the temporal evolution of surface chemistry, specifically surface hydroxyls and fluorine groups, is monitored. The surface density of fluorine moieties is 2.5 times higher than that of the hydroxyl groups, implying that the surface is well fluorinated during vapor etching.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0141062</identifier><identifier>PMID: 36889963</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Algorithms ; Computer simulation ; Etching ; Evolution ; Fluorides ; Fluorine ; Hydrogen fluoride ; Hydroxyl groups ; Moisture effects ; Roughening ; Silica glass ; Silicon dioxide ; Surface properties ; Surface reactions ; Surface roughness</subject><ispartof>The Journal of chemical physics, 2023-03, Vol.158 (9), p.094709-094709</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-a04851a795a8825ed78a8f587175fc6f639d42f0eb4ff00d780999aec414dfde3</citedby><cites>FETCH-LOGICAL-c383t-a04851a795a8825ed78a8f587175fc6f639d42f0eb4ff00d780999aec414dfde3</cites><orcidid>0000-0002-8595-4342 ; 0000-0003-1237-2541 ; 0000-0002-8726-9525 ; 0000-0003-0499-3209</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0141062$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36889963$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Hyunhang</creatorcontrib><creatorcontrib>Antony, Andrew C.</creatorcontrib><creatorcontrib>Banerjee, Joy</creatorcontrib><creatorcontrib>Smith, Nicholas J.</creatorcontrib><creatorcontrib>Agnello, Gabriel</creatorcontrib><title>Prediction of glassy silica etching with hydrogen fluoride gas by kinetic Monte Carlo simulations</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Understanding the surface properties of glass during the hydrogen fluoride (HF)-based vapor etching process is essential to optimize treatment processes in semiconductor and glass industries. In this work, we investigate an etching process of fused glassy silica by HF gas with kinetic Monte Carlo (KMC) simulations. Detailed pathways of surface reactions between gas molecules and the silica surface with activation energy sets are explicitly implemented in the KMC algorithm for both dry and humid conditions. The KMC model successfully describes the etching of the silica surface with the evolution of surface morphology up to the micron regime. The simulation results show that the calculated etch rate and surface roughness are in good agreement with the experimental results, and the effect of humidity on the etch rate is also confirmed. Development of roughness is theoretically analyzed in terms of surface roughening phenomena, and it is predicted that the values of growth and roughening exponents are 0.19 and 0.33, respectively, suggesting that our model belongs to the Kardar–Parisi–Zhang universality class. Furthermore, the temporal evolution of surface chemistry, specifically surface hydroxyls and fluorine groups, is monitored. The surface density of fluorine moieties is 2.5 times higher than that of the hydroxyl groups, implying that the surface is well fluorinated during vapor etching.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Etching</subject><subject>Evolution</subject><subject>Fluorides</subject><subject>Fluorine</subject><subject>Hydrogen fluoride</subject><subject>Hydroxyl groups</subject><subject>Moisture effects</subject><subject>Roughening</subject><subject>Silica glass</subject><subject>Silicon dioxide</subject><subject>Surface properties</subject><subject>Surface reactions</subject><subject>Surface roughness</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90E1LwzAcx_Egis7pwTcgAS8qdP7T9CE5yvAJJnrQc8nysGV2zUxape_e1k0FQU8J5MOP8EXoiMCIQEYv0hGQpLvFW2hAgPEozzhsowFATCKeQbaH9kNYAADJ42QX7dGMMc4zOkDi0WtlZW1dhZ3Bs1KE0OJgSysF1rWc22qG3209x_NWeTfTFTZl47xVGs9EwNMWv9hK11bie1fVGo-FL103sGxK0a-GA7RjRBn04eYcoufrq6fxbTR5uLkbX04iSRmtIwEJS4nIeSoYi1OtciaYSVlO8tTIzGSUqyQ2oKeJMQDdM3DOhZYJSZRRmg7R6Xp35d1ro0NdLG2QuixFpV0TijhnaQyQ0LijJ7_owjW-6n7XK-jLcNqps7WS3oXgtSlW3i6FbwsCRd-9SItN984ebxab6VKrb_kVugPnaxCkrT_D_Lv2J35z_gcWK2XoB5S6mPQ</recordid><startdate>20230307</startdate><enddate>20230307</enddate><creator>Park, Hyunhang</creator><creator>Antony, Andrew C.</creator><creator>Banerjee, Joy</creator><creator>Smith, Nicholas J.</creator><creator>Agnello, Gabriel</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8595-4342</orcidid><orcidid>https://orcid.org/0000-0003-1237-2541</orcidid><orcidid>https://orcid.org/0000-0002-8726-9525</orcidid><orcidid>https://orcid.org/0000-0003-0499-3209</orcidid></search><sort><creationdate>20230307</creationdate><title>Prediction of glassy silica etching with hydrogen fluoride gas by kinetic Monte Carlo simulations</title><author>Park, Hyunhang ; Antony, Andrew C. ; Banerjee, Joy ; Smith, Nicholas J. ; Agnello, Gabriel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-a04851a795a8825ed78a8f587175fc6f639d42f0eb4ff00d780999aec414dfde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Etching</topic><topic>Evolution</topic><topic>Fluorides</topic><topic>Fluorine</topic><topic>Hydrogen fluoride</topic><topic>Hydroxyl groups</topic><topic>Moisture effects</topic><topic>Roughening</topic><topic>Silica glass</topic><topic>Silicon dioxide</topic><topic>Surface properties</topic><topic>Surface reactions</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Hyunhang</creatorcontrib><creatorcontrib>Antony, Andrew C.</creatorcontrib><creatorcontrib>Banerjee, Joy</creatorcontrib><creatorcontrib>Smith, Nicholas J.</creatorcontrib><creatorcontrib>Agnello, Gabriel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Hyunhang</au><au>Antony, Andrew C.</au><au>Banerjee, Joy</au><au>Smith, Nicholas J.</au><au>Agnello, Gabriel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of glassy silica etching with hydrogen fluoride gas by kinetic Monte Carlo simulations</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2023-03-07</date><risdate>2023</risdate><volume>158</volume><issue>9</issue><spage>094709</spage><epage>094709</epage><pages>094709-094709</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Understanding the surface properties of glass during the hydrogen fluoride (HF)-based vapor etching process is essential to optimize treatment processes in semiconductor and glass industries. In this work, we investigate an etching process of fused glassy silica by HF gas with kinetic Monte Carlo (KMC) simulations. Detailed pathways of surface reactions between gas molecules and the silica surface with activation energy sets are explicitly implemented in the KMC algorithm for both dry and humid conditions. The KMC model successfully describes the etching of the silica surface with the evolution of surface morphology up to the micron regime. The simulation results show that the calculated etch rate and surface roughness are in good agreement with the experimental results, and the effect of humidity on the etch rate is also confirmed. Development of roughness is theoretically analyzed in terms of surface roughening phenomena, and it is predicted that the values of growth and roughening exponents are 0.19 and 0.33, respectively, suggesting that our model belongs to the Kardar–Parisi–Zhang universality class. Furthermore, the temporal evolution of surface chemistry, specifically surface hydroxyls and fluorine groups, is monitored. The surface density of fluorine moieties is 2.5 times higher than that of the hydroxyl groups, implying that the surface is well fluorinated during vapor etching.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>36889963</pmid><doi>10.1063/5.0141062</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8595-4342</orcidid><orcidid>https://orcid.org/0000-0003-1237-2541</orcidid><orcidid>https://orcid.org/0000-0002-8726-9525</orcidid><orcidid>https://orcid.org/0000-0003-0499-3209</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2023-03, Vol.158 (9), p.094709-094709
issn 0021-9606
1089-7690
language eng
recordid cdi_scitation_primary_10_1063_5_0141062
source AIP Journals Complete; Alma/SFX Local Collection
subjects Algorithms
Computer simulation
Etching
Evolution
Fluorides
Fluorine
Hydrogen fluoride
Hydroxyl groups
Moisture effects
Roughening
Silica glass
Silicon dioxide
Surface properties
Surface reactions
Surface roughness
title Prediction of glassy silica etching with hydrogen fluoride gas by kinetic Monte Carlo simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A10%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20glassy%20silica%20etching%20with%20hydrogen%20fluoride%20gas%20by%20kinetic%20Monte%20Carlo%20simulations&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Park,%20Hyunhang&rft.date=2023-03-07&rft.volume=158&rft.issue=9&rft.spage=094709&rft.epage=094709&rft.pages=094709-094709&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0141062&rft_dat=%3Cproquest_scita%3E2785200432%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2780996393&rft_id=info:pmid/36889963&rfr_iscdi=true