Comparison between multiple linear regression and multi-layer perceptron neural network for predicting stocks from mining sector in LQ45
The development of mathematics means that there are more choice of techniques to predicting stock price movements. There are many tools for prediction in mathematics but on this study we adopt Multiple Linear Regression model and Multi-Layer Perceptron Neural Network with three variables input and o...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2733 |
creator | Fawazdhia, Muhammad Athanabil Andi Ramdani, Indra Cahya Septiani, Shinta Aulia Hsm, Zani Anjani Rafsanjani |
description | The development of mathematics means that there are more choice of techniques to predicting stock price movements. There are many tools for prediction in mathematics but on this study we adopt Multiple Linear Regression model and Multi-Layer Perceptron Neural Network with three variables input and one variable target. We use open price, high price, low price, and close price of mining sector stocks data in LQ45 from February to July 2020. Multiple linear regression is a further development of simple linear regression, the differences of this method is that multiple linear regression has more than one independent variable. Multi-layer perceptron is a feedforward neural network. Generally Multi-layer perceptron has three layers; an input layer, hidden layers and output layer, and in this study using 3 hidden layers. The results of this study are the multiple linear regression for LQ45 produces RMSE of 0.0161656 and multi-layer perceptron neural network for LQ45 produces RMSE of 0.0868014. |
doi_str_mv | 10.1063/5.0140182 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0140182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2830429670</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1316-76273cc86cf90b5cbc74d996f09065ed983b8c998b3ae04fe31e16c94e03f72f3</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKcPfoOAb0Jn0rRp8yjDfzAQQcG3kqY3I1ub1CRz7Bv4sY1u4JtPB-75cS7nIHRJyYwSzm7KGaEFoXV-hCa0LGlWccqP0YQQUWR5wd5P0VkIK0JyUVX1BH3N3TBKb4KzuIW4BbB42PTRjD3g3liQHntYegjBJETabm9nvdyBxyN4BWP0ybKw8bJPErfOr7F2yfXQGRWNXeIQnVoHrL0b8GDs7wlUTJCxePFSlOfoRMs-wMVBp-jt_u51_pgtnh-e5reLbKSM8lQnr5hSNVdakLZUraqKTgiuiSC8hE7UrK2VEHXLJJBCA6NAuRIFEKarXLMputrnjt59bCDEZuU23qaXTV4zUuSCVyRR13sqKBNlTNWb0ZtB-l1DSfOzdFM2h6X_gz-d_wObsdPsG0UygY4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2830429670</pqid></control><display><type>conference_proceeding</type><title>Comparison between multiple linear regression and multi-layer perceptron neural network for predicting stocks from mining sector in LQ45</title><source>AIP Journals Complete</source><creator>Fawazdhia, Muhammad Athanabil Andi ; Ramdani, Indra Cahya ; Septiani, Shinta Aulia ; Hsm, Zani Anjani Rafsanjani</creator><contributor>Hendroanto, Aan ; Prasetyo, Puguh Wahyu ; Wijayanti, Dian Eka ; Nurnugroho, Burhanudin Arif ; Istiandaru, Afit ; Rusmining</contributor><creatorcontrib>Fawazdhia, Muhammad Athanabil Andi ; Ramdani, Indra Cahya ; Septiani, Shinta Aulia ; Hsm, Zani Anjani Rafsanjani ; Hendroanto, Aan ; Prasetyo, Puguh Wahyu ; Wijayanti, Dian Eka ; Nurnugroho, Burhanudin Arif ; Istiandaru, Afit ; Rusmining</creatorcontrib><description>The development of mathematics means that there are more choice of techniques to predicting stock price movements. There are many tools for prediction in mathematics but on this study we adopt Multiple Linear Regression model and Multi-Layer Perceptron Neural Network with three variables input and one variable target. We use open price, high price, low price, and close price of mining sector stocks data in LQ45 from February to July 2020. Multiple linear regression is a further development of simple linear regression, the differences of this method is that multiple linear regression has more than one independent variable. Multi-layer perceptron is a feedforward neural network. Generally Multi-layer perceptron has three layers; an input layer, hidden layers and output layer, and in this study using 3 hidden layers. The results of this study are the multiple linear regression for LQ45 produces RMSE of 0.0161656 and multi-layer perceptron neural network for LQ45 produces RMSE of 0.0868014.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0140182</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial neural networks ; Independent variables ; Mining industry ; Multilayer perceptrons ; Multilayers ; Neural networks ; Predictions ; Regression analysis ; Regression models</subject><ispartof>AIP conference proceedings, 2023, Vol.2733 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0140182$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76126</link.rule.ids></links><search><contributor>Hendroanto, Aan</contributor><contributor>Prasetyo, Puguh Wahyu</contributor><contributor>Wijayanti, Dian Eka</contributor><contributor>Nurnugroho, Burhanudin Arif</contributor><contributor>Istiandaru, Afit</contributor><contributor>Rusmining</contributor><creatorcontrib>Fawazdhia, Muhammad Athanabil Andi</creatorcontrib><creatorcontrib>Ramdani, Indra Cahya</creatorcontrib><creatorcontrib>Septiani, Shinta Aulia</creatorcontrib><creatorcontrib>Hsm, Zani Anjani Rafsanjani</creatorcontrib><title>Comparison between multiple linear regression and multi-layer perceptron neural network for predicting stocks from mining sector in LQ45</title><title>AIP conference proceedings</title><description>The development of mathematics means that there are more choice of techniques to predicting stock price movements. There are many tools for prediction in mathematics but on this study we adopt Multiple Linear Regression model and Multi-Layer Perceptron Neural Network with three variables input and one variable target. We use open price, high price, low price, and close price of mining sector stocks data in LQ45 from February to July 2020. Multiple linear regression is a further development of simple linear regression, the differences of this method is that multiple linear regression has more than one independent variable. Multi-layer perceptron is a feedforward neural network. Generally Multi-layer perceptron has three layers; an input layer, hidden layers and output layer, and in this study using 3 hidden layers. The results of this study are the multiple linear regression for LQ45 produces RMSE of 0.0161656 and multi-layer perceptron neural network for LQ45 produces RMSE of 0.0868014.</description><subject>Artificial neural networks</subject><subject>Independent variables</subject><subject>Mining industry</subject><subject>Multilayer perceptrons</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Predictions</subject><subject>Regression analysis</subject><subject>Regression models</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kF9LwzAUxYMoOKcPfoOAb0Jn0rRp8yjDfzAQQcG3kqY3I1ub1CRz7Bv4sY1u4JtPB-75cS7nIHRJyYwSzm7KGaEFoXV-hCa0LGlWccqP0YQQUWR5wd5P0VkIK0JyUVX1BH3N3TBKb4KzuIW4BbB42PTRjD3g3liQHntYegjBJETabm9nvdyBxyN4BWP0ybKw8bJPErfOr7F2yfXQGRWNXeIQnVoHrL0b8GDs7wlUTJCxePFSlOfoRMs-wMVBp-jt_u51_pgtnh-e5reLbKSM8lQnr5hSNVdakLZUraqKTgiuiSC8hE7UrK2VEHXLJJBCA6NAuRIFEKarXLMputrnjt59bCDEZuU23qaXTV4zUuSCVyRR13sqKBNlTNWb0ZtB-l1DSfOzdFM2h6X_gz-d_wObsdPsG0UygY4</recordid><startdate>20230628</startdate><enddate>20230628</enddate><creator>Fawazdhia, Muhammad Athanabil Andi</creator><creator>Ramdani, Indra Cahya</creator><creator>Septiani, Shinta Aulia</creator><creator>Hsm, Zani Anjani Rafsanjani</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230628</creationdate><title>Comparison between multiple linear regression and multi-layer perceptron neural network for predicting stocks from mining sector in LQ45</title><author>Fawazdhia, Muhammad Athanabil Andi ; Ramdani, Indra Cahya ; Septiani, Shinta Aulia ; Hsm, Zani Anjani Rafsanjani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1316-76273cc86cf90b5cbc74d996f09065ed983b8c998b3ae04fe31e16c94e03f72f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Independent variables</topic><topic>Mining industry</topic><topic>Multilayer perceptrons</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Predictions</topic><topic>Regression analysis</topic><topic>Regression models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fawazdhia, Muhammad Athanabil Andi</creatorcontrib><creatorcontrib>Ramdani, Indra Cahya</creatorcontrib><creatorcontrib>Septiani, Shinta Aulia</creatorcontrib><creatorcontrib>Hsm, Zani Anjani Rafsanjani</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fawazdhia, Muhammad Athanabil Andi</au><au>Ramdani, Indra Cahya</au><au>Septiani, Shinta Aulia</au><au>Hsm, Zani Anjani Rafsanjani</au><au>Hendroanto, Aan</au><au>Prasetyo, Puguh Wahyu</au><au>Wijayanti, Dian Eka</au><au>Nurnugroho, Burhanudin Arif</au><au>Istiandaru, Afit</au><au>Rusmining</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Comparison between multiple linear regression and multi-layer perceptron neural network for predicting stocks from mining sector in LQ45</atitle><btitle>AIP conference proceedings</btitle><date>2023-06-28</date><risdate>2023</risdate><volume>2733</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The development of mathematics means that there are more choice of techniques to predicting stock price movements. There are many tools for prediction in mathematics but on this study we adopt Multiple Linear Regression model and Multi-Layer Perceptron Neural Network with three variables input and one variable target. We use open price, high price, low price, and close price of mining sector stocks data in LQ45 from February to July 2020. Multiple linear regression is a further development of simple linear regression, the differences of this method is that multiple linear regression has more than one independent variable. Multi-layer perceptron is a feedforward neural network. Generally Multi-layer perceptron has three layers; an input layer, hidden layers and output layer, and in this study using 3 hidden layers. The results of this study are the multiple linear regression for LQ45 produces RMSE of 0.0161656 and multi-layer perceptron neural network for LQ45 produces RMSE of 0.0868014.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0140182</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2023, Vol.2733 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0140182 |
source | AIP Journals Complete |
subjects | Artificial neural networks Independent variables Mining industry Multilayer perceptrons Multilayers Neural networks Predictions Regression analysis Regression models |
title | Comparison between multiple linear regression and multi-layer perceptron neural network for predicting stocks from mining sector in LQ45 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A47%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Comparison%20between%20multiple%20linear%20regression%20and%20multi-layer%20perceptron%20neural%20network%20for%20predicting%20stocks%20from%20mining%20sector%20in%20LQ45&rft.btitle=AIP%20conference%20proceedings&rft.au=Fawazdhia,%20Muhammad%20Athanabil%20Andi&rft.date=2023-06-28&rft.volume=2733&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0140182&rft_dat=%3Cproquest_scita%3E2830429670%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2830429670&rft_id=info:pmid/&rfr_iscdi=true |