Machine learning reconstruction of depth-dependent thermal conductivity profile from pump–probe thermoreflectance signals
Characterizing spatially varying thermal conductivities is significant to unveil the structure–property relation for a wide range of thermal functional materials such as chemical-vapor-deposited (CVD) diamonds, ion-irradiated materials, nuclear materials under radiation, and battery electrode materi...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2023-04, Vol.122 (14) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 14 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 122 |
creator | Xiang, Zeyu Pang, Yu Qian, Xin Yang, Ronggui |
description | Characterizing spatially varying thermal conductivities is significant to unveil the structure–property relation for a wide range of thermal functional materials such as chemical-vapor-deposited (CVD) diamonds, ion-irradiated materials, nuclear materials under radiation, and battery electrode materials. Although the development of thermal property microscopy based on time/frequency-domain thermoreflectance (TDTR/FDTR) enabled in-plane scanning of a thermal conductivity profile, measuring depth-dependent profiles remains challenging. This work proposed a machine-learning-based reconstruction method for extracting depth-dependent thermal conductivity
K
(
z
) directly from pump–probe phase signals. We demonstrated that the simple supervised-learning algorithm kernel ridge regression can reconstruct
K
(
z
) without requiring pre-knowledge about the functional form of the profile. The reconstruction method can not only accurately reproduce typical
K
(
z
) distributions such as the exponential profile of CVD diamonds and the Gaussian profile of ion-irradiated materials but also complex profiles artificially constructed by superimposing Gaussian, exponential, polynomial, and logarithmic functions. In addition to FDTR, the method also shows excellent performance of reconstructing
K
(
z
) of ion-irradiated semiconductors from TDTR signals. This work demonstrates that combining machine learning with pump–probe thermoreflectance is an effective way for depth-dependent thermal property mapping. |
doi_str_mv | 10.1063/5.0138060 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0138060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2795811998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-b98bb9ffbcb0c7b866766d5a61776449834282e790053c1557d977a7a86fcb7d3</originalsourceid><addsrcrecordid>eNqdkM1KAzEUhYMoWKsL3yDgSmFqMmmSmaUU_6DiRtdDJpO0KdNkTDKF4sZ38A19EjNMwb2be7iXj8O5B4BLjGYYMXJLZwiTAjF0BCYYcZ4RjItjMEEIkYyVFJ-CsxA2aaU5IRPw-SLk2lgFWyW8NXYFvZLOhuh7GY2z0GnYqC6uszSVbZSNMK6V34oWJq4ZqJ2Je9h5p02roPZuC7t-2_18fadbrUbceaVbJaOwUsFgVla04Ryc6CTq4qBT8P5w_7Z4ypavj8-Lu2UmCctjVpdFXZda17JGktcFY5yxhgqGOWfzeVmQeV7kipfpJyIxpbwpORdcFEzLmjdkCq5G35Tno1chVhvX-yFBlfOSFhiXyWQKrkdKehdCilt13myF31cYVUO3Fa0O3Sb2ZmSDNFEMPf0P3jn_B1Zdo8kv-KqLVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795811998</pqid></control><display><type>article</type><title>Machine learning reconstruction of depth-dependent thermal conductivity profile from pump–probe thermoreflectance signals</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Xiang, Zeyu ; Pang, Yu ; Qian, Xin ; Yang, Ronggui</creator><creatorcontrib>Xiang, Zeyu ; Pang, Yu ; Qian, Xin ; Yang, Ronggui</creatorcontrib><description>Characterizing spatially varying thermal conductivities is significant to unveil the structure–property relation for a wide range of thermal functional materials such as chemical-vapor-deposited (CVD) diamonds, ion-irradiated materials, nuclear materials under radiation, and battery electrode materials. Although the development of thermal property microscopy based on time/frequency-domain thermoreflectance (TDTR/FDTR) enabled in-plane scanning of a thermal conductivity profile, measuring depth-dependent profiles remains challenging. This work proposed a machine-learning-based reconstruction method for extracting depth-dependent thermal conductivity
K
(
z
) directly from pump–probe phase signals. We demonstrated that the simple supervised-learning algorithm kernel ridge regression can reconstruct
K
(
z
) without requiring pre-knowledge about the functional form of the profile. The reconstruction method can not only accurately reproduce typical
K
(
z
) distributions such as the exponential profile of CVD diamonds and the Gaussian profile of ion-irradiated materials but also complex profiles artificially constructed by superimposing Gaussian, exponential, polynomial, and logarithmic functions. In addition to FDTR, the method also shows excellent performance of reconstructing
K
(
z
) of ion-irradiated semiconductors from TDTR signals. This work demonstrates that combining machine learning with pump–probe thermoreflectance is an effective way for depth-dependent thermal property mapping.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0138060</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Applied physics ; Chemical vapor deposition ; Conductivity ; Diamonds ; Electrode materials ; Functional materials ; Functions (mathematics) ; Heat conductivity ; Heat transfer ; Machine learning ; Mathematical analysis ; Polynomials ; Reconstruction ; Thermal conductivity ; Thermodynamic properties</subject><ispartof>Applied physics letters, 2023-04, Vol.122 (14)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-b98bb9ffbcb0c7b866766d5a61776449834282e790053c1557d977a7a86fcb7d3</citedby><cites>FETCH-LOGICAL-c362t-b98bb9ffbcb0c7b866766d5a61776449834282e790053c1557d977a7a86fcb7d3</cites><orcidid>0000-0002-3198-2014 ; 0000-0002-2091-864X ; 0000-0002-3602-6945</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0138060$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Xiang, Zeyu</creatorcontrib><creatorcontrib>Pang, Yu</creatorcontrib><creatorcontrib>Qian, Xin</creatorcontrib><creatorcontrib>Yang, Ronggui</creatorcontrib><title>Machine learning reconstruction of depth-dependent thermal conductivity profile from pump–probe thermoreflectance signals</title><title>Applied physics letters</title><description>Characterizing spatially varying thermal conductivities is significant to unveil the structure–property relation for a wide range of thermal functional materials such as chemical-vapor-deposited (CVD) diamonds, ion-irradiated materials, nuclear materials under radiation, and battery electrode materials. Although the development of thermal property microscopy based on time/frequency-domain thermoreflectance (TDTR/FDTR) enabled in-plane scanning of a thermal conductivity profile, measuring depth-dependent profiles remains challenging. This work proposed a machine-learning-based reconstruction method for extracting depth-dependent thermal conductivity
K
(
z
) directly from pump–probe phase signals. We demonstrated that the simple supervised-learning algorithm kernel ridge regression can reconstruct
K
(
z
) without requiring pre-knowledge about the functional form of the profile. The reconstruction method can not only accurately reproduce typical
K
(
z
) distributions such as the exponential profile of CVD diamonds and the Gaussian profile of ion-irradiated materials but also complex profiles artificially constructed by superimposing Gaussian, exponential, polynomial, and logarithmic functions. In addition to FDTR, the method also shows excellent performance of reconstructing
K
(
z
) of ion-irradiated semiconductors from TDTR signals. This work demonstrates that combining machine learning with pump–probe thermoreflectance is an effective way for depth-dependent thermal property mapping.</description><subject>Algorithms</subject><subject>Applied physics</subject><subject>Chemical vapor deposition</subject><subject>Conductivity</subject><subject>Diamonds</subject><subject>Electrode materials</subject><subject>Functional materials</subject><subject>Functions (mathematics)</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><subject>Reconstruction</subject><subject>Thermal conductivity</subject><subject>Thermodynamic properties</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqdkM1KAzEUhYMoWKsL3yDgSmFqMmmSmaUU_6DiRtdDJpO0KdNkTDKF4sZ38A19EjNMwb2be7iXj8O5B4BLjGYYMXJLZwiTAjF0BCYYcZ4RjItjMEEIkYyVFJ-CsxA2aaU5IRPw-SLk2lgFWyW8NXYFvZLOhuh7GY2z0GnYqC6uszSVbZSNMK6V34oWJq4ZqJ2Je9h5p02roPZuC7t-2_18fadbrUbceaVbJaOwUsFgVla04Ryc6CTq4qBT8P5w_7Z4ypavj8-Lu2UmCctjVpdFXZda17JGktcFY5yxhgqGOWfzeVmQeV7kipfpJyIxpbwpORdcFEzLmjdkCq5G35Tno1chVhvX-yFBlfOSFhiXyWQKrkdKehdCilt13myF31cYVUO3Fa0O3Sb2ZmSDNFEMPf0P3jn_B1Zdo8kv-KqLVA</recordid><startdate>20230403</startdate><enddate>20230403</enddate><creator>Xiang, Zeyu</creator><creator>Pang, Yu</creator><creator>Qian, Xin</creator><creator>Yang, Ronggui</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3198-2014</orcidid><orcidid>https://orcid.org/0000-0002-2091-864X</orcidid><orcidid>https://orcid.org/0000-0002-3602-6945</orcidid></search><sort><creationdate>20230403</creationdate><title>Machine learning reconstruction of depth-dependent thermal conductivity profile from pump–probe thermoreflectance signals</title><author>Xiang, Zeyu ; Pang, Yu ; Qian, Xin ; Yang, Ronggui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-b98bb9ffbcb0c7b866766d5a61776449834282e790053c1557d977a7a86fcb7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Applied physics</topic><topic>Chemical vapor deposition</topic><topic>Conductivity</topic><topic>Diamonds</topic><topic>Electrode materials</topic><topic>Functional materials</topic><topic>Functions (mathematics)</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><topic>Reconstruction</topic><topic>Thermal conductivity</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Zeyu</creatorcontrib><creatorcontrib>Pang, Yu</creatorcontrib><creatorcontrib>Qian, Xin</creatorcontrib><creatorcontrib>Yang, Ronggui</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Zeyu</au><au>Pang, Yu</au><au>Qian, Xin</au><au>Yang, Ronggui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning reconstruction of depth-dependent thermal conductivity profile from pump–probe thermoreflectance signals</atitle><jtitle>Applied physics letters</jtitle><date>2023-04-03</date><risdate>2023</risdate><volume>122</volume><issue>14</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Characterizing spatially varying thermal conductivities is significant to unveil the structure–property relation for a wide range of thermal functional materials such as chemical-vapor-deposited (CVD) diamonds, ion-irradiated materials, nuclear materials under radiation, and battery electrode materials. Although the development of thermal property microscopy based on time/frequency-domain thermoreflectance (TDTR/FDTR) enabled in-plane scanning of a thermal conductivity profile, measuring depth-dependent profiles remains challenging. This work proposed a machine-learning-based reconstruction method for extracting depth-dependent thermal conductivity
K
(
z
) directly from pump–probe phase signals. We demonstrated that the simple supervised-learning algorithm kernel ridge regression can reconstruct
K
(
z
) without requiring pre-knowledge about the functional form of the profile. The reconstruction method can not only accurately reproduce typical
K
(
z
) distributions such as the exponential profile of CVD diamonds and the Gaussian profile of ion-irradiated materials but also complex profiles artificially constructed by superimposing Gaussian, exponential, polynomial, and logarithmic functions. In addition to FDTR, the method also shows excellent performance of reconstructing
K
(
z
) of ion-irradiated semiconductors from TDTR signals. This work demonstrates that combining machine learning with pump–probe thermoreflectance is an effective way for depth-dependent thermal property mapping.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0138060</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3198-2014</orcidid><orcidid>https://orcid.org/0000-0002-2091-864X</orcidid><orcidid>https://orcid.org/0000-0002-3602-6945</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2023-04, Vol.122 (14) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0138060 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Algorithms Applied physics Chemical vapor deposition Conductivity Diamonds Electrode materials Functional materials Functions (mathematics) Heat conductivity Heat transfer Machine learning Mathematical analysis Polynomials Reconstruction Thermal conductivity Thermodynamic properties |
title | Machine learning reconstruction of depth-dependent thermal conductivity profile from pump–probe thermoreflectance signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A41%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20reconstruction%20of%20depth-dependent%20thermal%20conductivity%20profile%20from%20pump%E2%80%93probe%20thermoreflectance%20signals&rft.jtitle=Applied%20physics%20letters&rft.au=Xiang,%20Zeyu&rft.date=2023-04-03&rft.volume=122&rft.issue=14&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0138060&rft_dat=%3Cproquest_scita%3E2795811998%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2795811998&rft_id=info:pmid/&rfr_iscdi=true |