Machine learning reconstruction of depth-dependent thermal conductivity profile from pump–probe thermoreflectance signals

Characterizing spatially varying thermal conductivities is significant to unveil the structure–property relation for a wide range of thermal functional materials such as chemical-vapor-deposited (CVD) diamonds, ion-irradiated materials, nuclear materials under radiation, and battery electrode materi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2023-04, Vol.122 (14)
Hauptverfasser: Xiang, Zeyu, Pang, Yu, Qian, Xin, Yang, Ronggui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 14
container_start_page
container_title Applied physics letters
container_volume 122
creator Xiang, Zeyu
Pang, Yu
Qian, Xin
Yang, Ronggui
description Characterizing spatially varying thermal conductivities is significant to unveil the structure–property relation for a wide range of thermal functional materials such as chemical-vapor-deposited (CVD) diamonds, ion-irradiated materials, nuclear materials under radiation, and battery electrode materials. Although the development of thermal property microscopy based on time/frequency-domain thermoreflectance (TDTR/FDTR) enabled in-plane scanning of a thermal conductivity profile, measuring depth-dependent profiles remains challenging. This work proposed a machine-learning-based reconstruction method for extracting depth-dependent thermal conductivity K ( z ) directly from pump–probe phase signals. We demonstrated that the simple supervised-learning algorithm kernel ridge regression can reconstruct K ( z ) without requiring pre-knowledge about the functional form of the profile. The reconstruction method can not only accurately reproduce typical K ( z ) distributions such as the exponential profile of CVD diamonds and the Gaussian profile of ion-irradiated materials but also complex profiles artificially constructed by superimposing Gaussian, exponential, polynomial, and logarithmic functions. In addition to FDTR, the method also shows excellent performance of reconstructing K ( z ) of ion-irradiated semiconductors from TDTR signals. This work demonstrates that combining machine learning with pump–probe thermoreflectance is an effective way for depth-dependent thermal property mapping.
doi_str_mv 10.1063/5.0138060
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0138060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2795811998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-b98bb9ffbcb0c7b866766d5a61776449834282e790053c1557d977a7a86fcb7d3</originalsourceid><addsrcrecordid>eNqdkM1KAzEUhYMoWKsL3yDgSmFqMmmSmaUU_6DiRtdDJpO0KdNkTDKF4sZ38A19EjNMwb2be7iXj8O5B4BLjGYYMXJLZwiTAjF0BCYYcZ4RjItjMEEIkYyVFJ-CsxA2aaU5IRPw-SLk2lgFWyW8NXYFvZLOhuh7GY2z0GnYqC6uszSVbZSNMK6V34oWJq4ZqJ2Je9h5p02roPZuC7t-2_18fadbrUbceaVbJaOwUsFgVla04Ryc6CTq4qBT8P5w_7Z4ypavj8-Lu2UmCctjVpdFXZda17JGktcFY5yxhgqGOWfzeVmQeV7kipfpJyIxpbwpORdcFEzLmjdkCq5G35Tno1chVhvX-yFBlfOSFhiXyWQKrkdKehdCilt13myF31cYVUO3Fa0O3Sb2ZmSDNFEMPf0P3jn_B1Zdo8kv-KqLVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795811998</pqid></control><display><type>article</type><title>Machine learning reconstruction of depth-dependent thermal conductivity profile from pump–probe thermoreflectance signals</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Xiang, Zeyu ; Pang, Yu ; Qian, Xin ; Yang, Ronggui</creator><creatorcontrib>Xiang, Zeyu ; Pang, Yu ; Qian, Xin ; Yang, Ronggui</creatorcontrib><description>Characterizing spatially varying thermal conductivities is significant to unveil the structure–property relation for a wide range of thermal functional materials such as chemical-vapor-deposited (CVD) diamonds, ion-irradiated materials, nuclear materials under radiation, and battery electrode materials. Although the development of thermal property microscopy based on time/frequency-domain thermoreflectance (TDTR/FDTR) enabled in-plane scanning of a thermal conductivity profile, measuring depth-dependent profiles remains challenging. This work proposed a machine-learning-based reconstruction method for extracting depth-dependent thermal conductivity K ( z ) directly from pump–probe phase signals. We demonstrated that the simple supervised-learning algorithm kernel ridge regression can reconstruct K ( z ) without requiring pre-knowledge about the functional form of the profile. The reconstruction method can not only accurately reproduce typical K ( z ) distributions such as the exponential profile of CVD diamonds and the Gaussian profile of ion-irradiated materials but also complex profiles artificially constructed by superimposing Gaussian, exponential, polynomial, and logarithmic functions. In addition to FDTR, the method also shows excellent performance of reconstructing K ( z ) of ion-irradiated semiconductors from TDTR signals. This work demonstrates that combining machine learning with pump–probe thermoreflectance is an effective way for depth-dependent thermal property mapping.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0138060</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Applied physics ; Chemical vapor deposition ; Conductivity ; Diamonds ; Electrode materials ; Functional materials ; Functions (mathematics) ; Heat conductivity ; Heat transfer ; Machine learning ; Mathematical analysis ; Polynomials ; Reconstruction ; Thermal conductivity ; Thermodynamic properties</subject><ispartof>Applied physics letters, 2023-04, Vol.122 (14)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-b98bb9ffbcb0c7b866766d5a61776449834282e790053c1557d977a7a86fcb7d3</citedby><cites>FETCH-LOGICAL-c362t-b98bb9ffbcb0c7b866766d5a61776449834282e790053c1557d977a7a86fcb7d3</cites><orcidid>0000-0002-3198-2014 ; 0000-0002-2091-864X ; 0000-0002-3602-6945</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0138060$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Xiang, Zeyu</creatorcontrib><creatorcontrib>Pang, Yu</creatorcontrib><creatorcontrib>Qian, Xin</creatorcontrib><creatorcontrib>Yang, Ronggui</creatorcontrib><title>Machine learning reconstruction of depth-dependent thermal conductivity profile from pump–probe thermoreflectance signals</title><title>Applied physics letters</title><description>Characterizing spatially varying thermal conductivities is significant to unveil the structure–property relation for a wide range of thermal functional materials such as chemical-vapor-deposited (CVD) diamonds, ion-irradiated materials, nuclear materials under radiation, and battery electrode materials. Although the development of thermal property microscopy based on time/frequency-domain thermoreflectance (TDTR/FDTR) enabled in-plane scanning of a thermal conductivity profile, measuring depth-dependent profiles remains challenging. This work proposed a machine-learning-based reconstruction method for extracting depth-dependent thermal conductivity K ( z ) directly from pump–probe phase signals. We demonstrated that the simple supervised-learning algorithm kernel ridge regression can reconstruct K ( z ) without requiring pre-knowledge about the functional form of the profile. The reconstruction method can not only accurately reproduce typical K ( z ) distributions such as the exponential profile of CVD diamonds and the Gaussian profile of ion-irradiated materials but also complex profiles artificially constructed by superimposing Gaussian, exponential, polynomial, and logarithmic functions. In addition to FDTR, the method also shows excellent performance of reconstructing K ( z ) of ion-irradiated semiconductors from TDTR signals. This work demonstrates that combining machine learning with pump–probe thermoreflectance is an effective way for depth-dependent thermal property mapping.</description><subject>Algorithms</subject><subject>Applied physics</subject><subject>Chemical vapor deposition</subject><subject>Conductivity</subject><subject>Diamonds</subject><subject>Electrode materials</subject><subject>Functional materials</subject><subject>Functions (mathematics)</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><subject>Reconstruction</subject><subject>Thermal conductivity</subject><subject>Thermodynamic properties</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqdkM1KAzEUhYMoWKsL3yDgSmFqMmmSmaUU_6DiRtdDJpO0KdNkTDKF4sZ38A19EjNMwb2be7iXj8O5B4BLjGYYMXJLZwiTAjF0BCYYcZ4RjItjMEEIkYyVFJ-CsxA2aaU5IRPw-SLk2lgFWyW8NXYFvZLOhuh7GY2z0GnYqC6uszSVbZSNMK6V34oWJq4ZqJ2Je9h5p02roPZuC7t-2_18fadbrUbceaVbJaOwUsFgVla04Ryc6CTq4qBT8P5w_7Z4ypavj8-Lu2UmCctjVpdFXZda17JGktcFY5yxhgqGOWfzeVmQeV7kipfpJyIxpbwpORdcFEzLmjdkCq5G35Tno1chVhvX-yFBlfOSFhiXyWQKrkdKehdCilt13myF31cYVUO3Fa0O3Sb2ZmSDNFEMPf0P3jn_B1Zdo8kv-KqLVA</recordid><startdate>20230403</startdate><enddate>20230403</enddate><creator>Xiang, Zeyu</creator><creator>Pang, Yu</creator><creator>Qian, Xin</creator><creator>Yang, Ronggui</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3198-2014</orcidid><orcidid>https://orcid.org/0000-0002-2091-864X</orcidid><orcidid>https://orcid.org/0000-0002-3602-6945</orcidid></search><sort><creationdate>20230403</creationdate><title>Machine learning reconstruction of depth-dependent thermal conductivity profile from pump–probe thermoreflectance signals</title><author>Xiang, Zeyu ; Pang, Yu ; Qian, Xin ; Yang, Ronggui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-b98bb9ffbcb0c7b866766d5a61776449834282e790053c1557d977a7a86fcb7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Applied physics</topic><topic>Chemical vapor deposition</topic><topic>Conductivity</topic><topic>Diamonds</topic><topic>Electrode materials</topic><topic>Functional materials</topic><topic>Functions (mathematics)</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><topic>Reconstruction</topic><topic>Thermal conductivity</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Zeyu</creatorcontrib><creatorcontrib>Pang, Yu</creatorcontrib><creatorcontrib>Qian, Xin</creatorcontrib><creatorcontrib>Yang, Ronggui</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Zeyu</au><au>Pang, Yu</au><au>Qian, Xin</au><au>Yang, Ronggui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning reconstruction of depth-dependent thermal conductivity profile from pump–probe thermoreflectance signals</atitle><jtitle>Applied physics letters</jtitle><date>2023-04-03</date><risdate>2023</risdate><volume>122</volume><issue>14</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Characterizing spatially varying thermal conductivities is significant to unveil the structure–property relation for a wide range of thermal functional materials such as chemical-vapor-deposited (CVD) diamonds, ion-irradiated materials, nuclear materials under radiation, and battery electrode materials. Although the development of thermal property microscopy based on time/frequency-domain thermoreflectance (TDTR/FDTR) enabled in-plane scanning of a thermal conductivity profile, measuring depth-dependent profiles remains challenging. This work proposed a machine-learning-based reconstruction method for extracting depth-dependent thermal conductivity K ( z ) directly from pump–probe phase signals. We demonstrated that the simple supervised-learning algorithm kernel ridge regression can reconstruct K ( z ) without requiring pre-knowledge about the functional form of the profile. The reconstruction method can not only accurately reproduce typical K ( z ) distributions such as the exponential profile of CVD diamonds and the Gaussian profile of ion-irradiated materials but also complex profiles artificially constructed by superimposing Gaussian, exponential, polynomial, and logarithmic functions. In addition to FDTR, the method also shows excellent performance of reconstructing K ( z ) of ion-irradiated semiconductors from TDTR signals. This work demonstrates that combining machine learning with pump–probe thermoreflectance is an effective way for depth-dependent thermal property mapping.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0138060</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3198-2014</orcidid><orcidid>https://orcid.org/0000-0002-2091-864X</orcidid><orcidid>https://orcid.org/0000-0002-3602-6945</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2023-04, Vol.122 (14)
issn 0003-6951
1077-3118
language eng
recordid cdi_scitation_primary_10_1063_5_0138060
source AIP Journals Complete; Alma/SFX Local Collection
subjects Algorithms
Applied physics
Chemical vapor deposition
Conductivity
Diamonds
Electrode materials
Functional materials
Functions (mathematics)
Heat conductivity
Heat transfer
Machine learning
Mathematical analysis
Polynomials
Reconstruction
Thermal conductivity
Thermodynamic properties
title Machine learning reconstruction of depth-dependent thermal conductivity profile from pump–probe thermoreflectance signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A41%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20reconstruction%20of%20depth-dependent%20thermal%20conductivity%20profile%20from%20pump%E2%80%93probe%20thermoreflectance%20signals&rft.jtitle=Applied%20physics%20letters&rft.au=Xiang,%20Zeyu&rft.date=2023-04-03&rft.volume=122&rft.issue=14&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0138060&rft_dat=%3Cproquest_scita%3E2795811998%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2795811998&rft_id=info:pmid/&rfr_iscdi=true