Existence results for a class of p(x)-Kirchhoff-type equations with critical growth and critical frequency
This article deals with a class of p(x)-Laplace equations with critical growth and critical frequency. By using the variational methods and some analytical skills, we obtain the existence and multiplicity of nontrivial solutions for this problem. The novelty of this paper lies in two aspects: (1) th...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2023-04, Vol.64 (4) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Journal of mathematical physics |
container_volume | 64 |
creator | He, Rui Liang, Sihua |
description | This article deals with a class of p(x)-Laplace equations with critical growth and critical frequency. By using the variational methods and some analytical skills, we obtain the existence and multiplicity of nontrivial solutions for this problem. The novelty of this paper lies in two aspects: (1) this equation contains the degenerate case, which corresponds to the Kirchhoff term K vanishing at zero and (2) our paper is about the appearance of critical terms, which can be viewed as a partial extension of the results of Zhang et al. [Electron. J. Differ. Equations 2018, 1–20] concerning the existence of solutions to this problem in the subcritical case. |
doi_str_mv | 10.1063/5.0133793 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0133793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2805261300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-a05d49c3ea01a840c250c93866de7cd6134fc9554a71eccd0237e228c68be2e53</originalsourceid><addsrcrecordid>eNp90M1KAzEUBeAgCtbqwjcIuLHC1JtkMpNZSqk_WHCj6yFmEpsyTsYkte3bG22xC8FVuOHjHO5F6JzAmEDBrvkYCGNlxQ7QgICosrLg4hANACjNaC7EMToJYQFAiMjzAVpM1zZE3SmNvQ7LNgZsnMcSq1aGgJ3B_eV6lD1ar-ZzZ0wWN73G-mMpo3VdwCsb51h5G62SLX7zbpVm2TX7P-OTTgWbU3RkZBv02e4dopfb6fPkPps93T1MbmaZYrSMmQTe5JViWgKRIgdFOaiKiaJodKmagrDcqIrzXJZEK9UAZaWmVKhCvGqqORuii21u711qDrFeuKXvUmVNBXCaEgCSGm2V8i4Er03de_su_aYmUH-fsub17pTJXm1tUDb-LP6LP53fw7pvzH_4b_IXkjOCoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2805261300</pqid></control><display><type>article</type><title>Existence results for a class of p(x)-Kirchhoff-type equations with critical growth and critical frequency</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>He, Rui ; Liang, Sihua</creator><creatorcontrib>He, Rui ; Liang, Sihua</creatorcontrib><description>This article deals with a class of p(x)-Laplace equations with critical growth and critical frequency. By using the variational methods and some analytical skills, we obtain the existence and multiplicity of nontrivial solutions for this problem. The novelty of this paper lies in two aspects: (1) this equation contains the degenerate case, which corresponds to the Kirchhoff term K vanishing at zero and (2) our paper is about the appearance of critical terms, which can be viewed as a partial extension of the results of Zhang et al. [Electron. J. Differ. Equations 2018, 1–20] concerning the existence of solutions to this problem in the subcritical case.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0133793</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Laplace equation ; Mathematical analysis ; Physics ; Variational methods</subject><ispartof>Journal of mathematical physics, 2023-04, Vol.64 (4)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-a05d49c3ea01a840c250c93866de7cd6134fc9554a71eccd0237e228c68be2e53</citedby><cites>FETCH-LOGICAL-c327t-a05d49c3ea01a840c250c93866de7cd6134fc9554a71eccd0237e228c68be2e53</cites><orcidid>0000-0002-4260-7762</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0133793$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27903,27904,76130</link.rule.ids></links><search><creatorcontrib>He, Rui</creatorcontrib><creatorcontrib>Liang, Sihua</creatorcontrib><title>Existence results for a class of p(x)-Kirchhoff-type equations with critical growth and critical frequency</title><title>Journal of mathematical physics</title><description>This article deals with a class of p(x)-Laplace equations with critical growth and critical frequency. By using the variational methods and some analytical skills, we obtain the existence and multiplicity of nontrivial solutions for this problem. The novelty of this paper lies in two aspects: (1) this equation contains the degenerate case, which corresponds to the Kirchhoff term K vanishing at zero and (2) our paper is about the appearance of critical terms, which can be viewed as a partial extension of the results of Zhang et al. [Electron. J. Differ. Equations 2018, 1–20] concerning the existence of solutions to this problem in the subcritical case.</description><subject>Laplace equation</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Variational methods</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEUBeAgCtbqwjcIuLHC1JtkMpNZSqk_WHCj6yFmEpsyTsYkte3bG22xC8FVuOHjHO5F6JzAmEDBrvkYCGNlxQ7QgICosrLg4hANACjNaC7EMToJYQFAiMjzAVpM1zZE3SmNvQ7LNgZsnMcSq1aGgJ3B_eV6lD1ar-ZzZ0wWN73G-mMpo3VdwCsb51h5G62SLX7zbpVm2TX7P-OTTgWbU3RkZBv02e4dopfb6fPkPps93T1MbmaZYrSMmQTe5JViWgKRIgdFOaiKiaJodKmagrDcqIrzXJZEK9UAZaWmVKhCvGqqORuii21u711qDrFeuKXvUmVNBXCaEgCSGm2V8i4Er03de_su_aYmUH-fsub17pTJXm1tUDb-LP6LP53fw7pvzH_4b_IXkjOCoA</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>He, Rui</creator><creator>Liang, Sihua</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4260-7762</orcidid></search><sort><creationdate>20230401</creationdate><title>Existence results for a class of p(x)-Kirchhoff-type equations with critical growth and critical frequency</title><author>He, Rui ; Liang, Sihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-a05d49c3ea01a840c250c93866de7cd6134fc9554a71eccd0237e228c68be2e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Laplace equation</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Variational methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Rui</creatorcontrib><creatorcontrib>Liang, Sihua</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Rui</au><au>Liang, Sihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence results for a class of p(x)-Kirchhoff-type equations with critical growth and critical frequency</atitle><jtitle>Journal of mathematical physics</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>64</volume><issue>4</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>This article deals with a class of p(x)-Laplace equations with critical growth and critical frequency. By using the variational methods and some analytical skills, we obtain the existence and multiplicity of nontrivial solutions for this problem. The novelty of this paper lies in two aspects: (1) this equation contains the degenerate case, which corresponds to the Kirchhoff term K vanishing at zero and (2) our paper is about the appearance of critical terms, which can be viewed as a partial extension of the results of Zhang et al. [Electron. J. Differ. Equations 2018, 1–20] concerning the existence of solutions to this problem in the subcritical case.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0133793</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4260-7762</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2023-04, Vol.64 (4) |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0133793 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Laplace equation Mathematical analysis Physics Variational methods |
title | Existence results for a class of p(x)-Kirchhoff-type equations with critical growth and critical frequency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A53%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20results%20for%20a%20class%20of%20p(x)-Kirchhoff-type%20equations%20with%20critical%20growth%20and%20critical%20frequency&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=He,%20Rui&rft.date=2023-04-01&rft.volume=64&rft.issue=4&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0133793&rft_dat=%3Cproquest_scita%3E2805261300%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2805261300&rft_id=info:pmid/&rfr_iscdi=true |