Existence results for a class of p(x)-Kirchhoff-type equations with critical growth and critical frequency

This article deals with a class of p(x)-Laplace equations with critical growth and critical frequency. By using the variational methods and some analytical skills, we obtain the existence and multiplicity of nontrivial solutions for this problem. The novelty of this paper lies in two aspects: (1) th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2023-04, Vol.64 (4)
Hauptverfasser: He, Rui, Liang, Sihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Journal of mathematical physics
container_volume 64
creator He, Rui
Liang, Sihua
description This article deals with a class of p(x)-Laplace equations with critical growth and critical frequency. By using the variational methods and some analytical skills, we obtain the existence and multiplicity of nontrivial solutions for this problem. The novelty of this paper lies in two aspects: (1) this equation contains the degenerate case, which corresponds to the Kirchhoff term K vanishing at zero and (2) our paper is about the appearance of critical terms, which can be viewed as a partial extension of the results of Zhang et al. [Electron. J. Differ. Equations 2018, 1–20] concerning the existence of solutions to this problem in the subcritical case.
doi_str_mv 10.1063/5.0133793
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0133793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2805261300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-a05d49c3ea01a840c250c93866de7cd6134fc9554a71eccd0237e228c68be2e53</originalsourceid><addsrcrecordid>eNp90M1KAzEUBeAgCtbqwjcIuLHC1JtkMpNZSqk_WHCj6yFmEpsyTsYkte3bG22xC8FVuOHjHO5F6JzAmEDBrvkYCGNlxQ7QgICosrLg4hANACjNaC7EMToJYQFAiMjzAVpM1zZE3SmNvQ7LNgZsnMcSq1aGgJ3B_eV6lD1ar-ZzZ0wWN73G-mMpo3VdwCsb51h5G62SLX7zbpVm2TX7P-OTTgWbU3RkZBv02e4dopfb6fPkPps93T1MbmaZYrSMmQTe5JViWgKRIgdFOaiKiaJodKmagrDcqIrzXJZEK9UAZaWmVKhCvGqqORuii21u711qDrFeuKXvUmVNBXCaEgCSGm2V8i4Er03de_su_aYmUH-fsub17pTJXm1tUDb-LP6LP53fw7pvzH_4b_IXkjOCoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2805261300</pqid></control><display><type>article</type><title>Existence results for a class of p(x)-Kirchhoff-type equations with critical growth and critical frequency</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>He, Rui ; Liang, Sihua</creator><creatorcontrib>He, Rui ; Liang, Sihua</creatorcontrib><description>This article deals with a class of p(x)-Laplace equations with critical growth and critical frequency. By using the variational methods and some analytical skills, we obtain the existence and multiplicity of nontrivial solutions for this problem. The novelty of this paper lies in two aspects: (1) this equation contains the degenerate case, which corresponds to the Kirchhoff term K vanishing at zero and (2) our paper is about the appearance of critical terms, which can be viewed as a partial extension of the results of Zhang et al. [Electron. J. Differ. Equations 2018, 1–20] concerning the existence of solutions to this problem in the subcritical case.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0133793</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Laplace equation ; Mathematical analysis ; Physics ; Variational methods</subject><ispartof>Journal of mathematical physics, 2023-04, Vol.64 (4)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-a05d49c3ea01a840c250c93866de7cd6134fc9554a71eccd0237e228c68be2e53</citedby><cites>FETCH-LOGICAL-c327t-a05d49c3ea01a840c250c93866de7cd6134fc9554a71eccd0237e228c68be2e53</cites><orcidid>0000-0002-4260-7762</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0133793$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27903,27904,76130</link.rule.ids></links><search><creatorcontrib>He, Rui</creatorcontrib><creatorcontrib>Liang, Sihua</creatorcontrib><title>Existence results for a class of p(x)-Kirchhoff-type equations with critical growth and critical frequency</title><title>Journal of mathematical physics</title><description>This article deals with a class of p(x)-Laplace equations with critical growth and critical frequency. By using the variational methods and some analytical skills, we obtain the existence and multiplicity of nontrivial solutions for this problem. The novelty of this paper lies in two aspects: (1) this equation contains the degenerate case, which corresponds to the Kirchhoff term K vanishing at zero and (2) our paper is about the appearance of critical terms, which can be viewed as a partial extension of the results of Zhang et al. [Electron. J. Differ. Equations 2018, 1–20] concerning the existence of solutions to this problem in the subcritical case.</description><subject>Laplace equation</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Variational methods</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEUBeAgCtbqwjcIuLHC1JtkMpNZSqk_WHCj6yFmEpsyTsYkte3bG22xC8FVuOHjHO5F6JzAmEDBrvkYCGNlxQ7QgICosrLg4hANACjNaC7EMToJYQFAiMjzAVpM1zZE3SmNvQ7LNgZsnMcSq1aGgJ3B_eV6lD1ar-ZzZ0wWN73G-mMpo3VdwCsb51h5G62SLX7zbpVm2TX7P-OTTgWbU3RkZBv02e4dopfb6fPkPps93T1MbmaZYrSMmQTe5JViWgKRIgdFOaiKiaJodKmagrDcqIrzXJZEK9UAZaWmVKhCvGqqORuii21u711qDrFeuKXvUmVNBXCaEgCSGm2V8i4Er03de_su_aYmUH-fsub17pTJXm1tUDb-LP6LP53fw7pvzH_4b_IXkjOCoA</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>He, Rui</creator><creator>Liang, Sihua</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4260-7762</orcidid></search><sort><creationdate>20230401</creationdate><title>Existence results for a class of p(x)-Kirchhoff-type equations with critical growth and critical frequency</title><author>He, Rui ; Liang, Sihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-a05d49c3ea01a840c250c93866de7cd6134fc9554a71eccd0237e228c68be2e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Laplace equation</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Variational methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Rui</creatorcontrib><creatorcontrib>Liang, Sihua</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Rui</au><au>Liang, Sihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence results for a class of p(x)-Kirchhoff-type equations with critical growth and critical frequency</atitle><jtitle>Journal of mathematical physics</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>64</volume><issue>4</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>This article deals with a class of p(x)-Laplace equations with critical growth and critical frequency. By using the variational methods and some analytical skills, we obtain the existence and multiplicity of nontrivial solutions for this problem. The novelty of this paper lies in two aspects: (1) this equation contains the degenerate case, which corresponds to the Kirchhoff term K vanishing at zero and (2) our paper is about the appearance of critical terms, which can be viewed as a partial extension of the results of Zhang et al. [Electron. J. Differ. Equations 2018, 1–20] concerning the existence of solutions to this problem in the subcritical case.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0133793</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4260-7762</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2023-04, Vol.64 (4)
issn 0022-2488
1089-7658
language eng
recordid cdi_scitation_primary_10_1063_5_0133793
source AIP Journals Complete; Alma/SFX Local Collection
subjects Laplace equation
Mathematical analysis
Physics
Variational methods
title Existence results for a class of p(x)-Kirchhoff-type equations with critical growth and critical frequency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A53%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20results%20for%20a%20class%20of%20p(x)-Kirchhoff-type%20equations%20with%20critical%20growth%20and%20critical%20frequency&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=He,%20Rui&rft.date=2023-04-01&rft.volume=64&rft.issue=4&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0133793&rft_dat=%3Cproquest_scita%3E2805261300%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2805261300&rft_id=info:pmid/&rfr_iscdi=true