Integrating test device and method for creep failure and ultrasonic response of methane hydrate-bearing sediments
Clarifying the creep behaviors of hydrate-bearing sediment (HBS) under long-term loading is crucial for evaluating reservoir stability during hydrate exploitation. Figuring out a way of characterizing deformation behaviors and their geophysical responses to HBS is the basis for modeling creep behavi...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2023-02, Vol.94 (2), p.025105-025105 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 025105 |
---|---|
container_issue | 2 |
container_start_page | 025105 |
container_title | Review of scientific instruments |
container_volume | 94 |
creator | Hu, Qiaobo Li, Yanlong Sun, Xiaofeng Chen, Mingtao Bu, Qingtao Gong, Bin |
description | Clarifying the creep behaviors of hydrate-bearing sediment (HBS) under long-term loading is crucial for evaluating reservoir stability during hydrate exploitation. Figuring out a way of characterizing deformation behaviors and their geophysical responses to HBS is the basis for modeling creep behaviors. In this study, we propose a novel device to test time-dependent deformation and the ultrasonic response of HBS under high-pressure and low-temperature. The experimental device consists of a high-pressure chamber, an axial-load control system, a confining pressure system, a pore pressure system, a back-pressure system, and a data collection system. This testing assembly allows temperature regulation and independent control of four pressures, e.g., confining pressure, pore pressure, back pressure, and axial loading. Columned artificial HBS samples, with a diameter of 39 mm and a height of 120 mm, can be synthesized in this device. Afterward, in situ creep experiments can be achieved by applying stable confining pressure and axial load, together with geophysical signals acquisition. During loading, the stress–strain relationships and ultrasonic data can be obtained simultaneously. Through analyzing the stress–strain relationship and ultrasonic data, the macroscopical failure and microcosmical creep deformation law of the samples can be figured out. Preliminary experiments verified the applicability of the device. The method provides some significance for field observation of reservoir failure via geophysical techniques during hydrate exploitation. |
doi_str_mv | 10.1063/5.0133198 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0133198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2781622292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-8293d23358c763b739d01521cef75b37a1ee220cff252a3604586a909b2017403</originalsourceid><addsrcrecordid>eNp90U1LHTEUBuBQLPXWuvAPSMCNLYzNx2SSLIvYVhDc2PWQSU50ZCYZk4zgv2_svbVQ0GyyyJOX84HQESVnlHT8qzgjlHOq1Tu0oUTpRnaM76ENIbxtOtmqffQx53tSj6D0A9rnnRKacLpBD5ehwG0yZQy3uEAu2MHjaAGb4PAM5S467GPCNgEs2JtxWtP2cZ1KMjmG0eIEeYkhA47-zx8TAN89uZoKzQAmPWdncOMMoeRP6L03U4bD3X2Afn2_uDn_2Vxd_7g8_3bV2Jaq0iimuWOcC2VlxwfJtSNUMGrBSzFwaSgAY8R6zwQzvCOtUJ3RRA-MUNkSfoBOt7lLig9r7ayfx2xhmmp1cc09k4p2jDHNKj35j97HNYVaXVWyjkzqVlX1eatsijkn8P2Sxtmkp56S_nkPveh3e6j2eJe4DjO4F_l38BV82YJsx1KnH8Obaa_ix5j-wX5xnv8GzDadtw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775117948</pqid></control><display><type>article</type><title>Integrating test device and method for creep failure and ultrasonic response of methane hydrate-bearing sediments</title><source>AIP Journals</source><source>Alma/SFX Local Collection</source><creator>Hu, Qiaobo ; Li, Yanlong ; Sun, Xiaofeng ; Chen, Mingtao ; Bu, Qingtao ; Gong, Bin</creator><creatorcontrib>Hu, Qiaobo ; Li, Yanlong ; Sun, Xiaofeng ; Chen, Mingtao ; Bu, Qingtao ; Gong, Bin</creatorcontrib><description>Clarifying the creep behaviors of hydrate-bearing sediment (HBS) under long-term loading is crucial for evaluating reservoir stability during hydrate exploitation. Figuring out a way of characterizing deformation behaviors and their geophysical responses to HBS is the basis for modeling creep behaviors. In this study, we propose a novel device to test time-dependent deformation and the ultrasonic response of HBS under high-pressure and low-temperature. The experimental device consists of a high-pressure chamber, an axial-load control system, a confining pressure system, a pore pressure system, a back-pressure system, and a data collection system. This testing assembly allows temperature regulation and independent control of four pressures, e.g., confining pressure, pore pressure, back pressure, and axial loading. Columned artificial HBS samples, with a diameter of 39 mm and a height of 120 mm, can be synthesized in this device. Afterward, in situ creep experiments can be achieved by applying stable confining pressure and axial load, together with geophysical signals acquisition. During loading, the stress–strain relationships and ultrasonic data can be obtained simultaneously. Through analyzing the stress–strain relationship and ultrasonic data, the macroscopical failure and microcosmical creep deformation law of the samples can be figured out. Preliminary experiments verified the applicability of the device. The method provides some significance for field observation of reservoir failure via geophysical techniques during hydrate exploitation.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/5.0133198</identifier><identifier>PMID: 36859031</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Axial loads ; Axial stress ; Confining ; Creep strength ; Data collection ; Deformation ; Exploitation ; Failure analysis ; Geophysical methods ; High pressure ; Low temperature ; Methane hydrates ; Pressure chambers ; Reservoirs ; Sediments ; Stability analysis ; Strain ; Stress-strain relationships ; Testing time</subject><ispartof>Review of scientific instruments, 2023-02, Vol.94 (2), p.025105-025105</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-8293d23358c763b739d01521cef75b37a1ee220cff252a3604586a909b2017403</citedby><cites>FETCH-LOGICAL-c418t-8293d23358c763b739d01521cef75b37a1ee220cff252a3604586a909b2017403</cites><orcidid>0000-0003-2859-2960 ; 0000-0002-8951-749X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/5.0133198$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,4513,27929,27930,76389</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36859031$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Qiaobo</creatorcontrib><creatorcontrib>Li, Yanlong</creatorcontrib><creatorcontrib>Sun, Xiaofeng</creatorcontrib><creatorcontrib>Chen, Mingtao</creatorcontrib><creatorcontrib>Bu, Qingtao</creatorcontrib><creatorcontrib>Gong, Bin</creatorcontrib><title>Integrating test device and method for creep failure and ultrasonic response of methane hydrate-bearing sediments</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>Clarifying the creep behaviors of hydrate-bearing sediment (HBS) under long-term loading is crucial for evaluating reservoir stability during hydrate exploitation. Figuring out a way of characterizing deformation behaviors and their geophysical responses to HBS is the basis for modeling creep behaviors. In this study, we propose a novel device to test time-dependent deformation and the ultrasonic response of HBS under high-pressure and low-temperature. The experimental device consists of a high-pressure chamber, an axial-load control system, a confining pressure system, a pore pressure system, a back-pressure system, and a data collection system. This testing assembly allows temperature regulation and independent control of four pressures, e.g., confining pressure, pore pressure, back pressure, and axial loading. Columned artificial HBS samples, with a diameter of 39 mm and a height of 120 mm, can be synthesized in this device. Afterward, in situ creep experiments can be achieved by applying stable confining pressure and axial load, together with geophysical signals acquisition. During loading, the stress–strain relationships and ultrasonic data can be obtained simultaneously. Through analyzing the stress–strain relationship and ultrasonic data, the macroscopical failure and microcosmical creep deformation law of the samples can be figured out. Preliminary experiments verified the applicability of the device. The method provides some significance for field observation of reservoir failure via geophysical techniques during hydrate exploitation.</description><subject>Axial loads</subject><subject>Axial stress</subject><subject>Confining</subject><subject>Creep strength</subject><subject>Data collection</subject><subject>Deformation</subject><subject>Exploitation</subject><subject>Failure analysis</subject><subject>Geophysical methods</subject><subject>High pressure</subject><subject>Low temperature</subject><subject>Methane hydrates</subject><subject>Pressure chambers</subject><subject>Reservoirs</subject><subject>Sediments</subject><subject>Stability analysis</subject><subject>Strain</subject><subject>Stress-strain relationships</subject><subject>Testing time</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90U1LHTEUBuBQLPXWuvAPSMCNLYzNx2SSLIvYVhDc2PWQSU50ZCYZk4zgv2_svbVQ0GyyyJOX84HQESVnlHT8qzgjlHOq1Tu0oUTpRnaM76ENIbxtOtmqffQx53tSj6D0A9rnnRKacLpBD5ehwG0yZQy3uEAu2MHjaAGb4PAM5S467GPCNgEs2JtxWtP2cZ1KMjmG0eIEeYkhA47-zx8TAN89uZoKzQAmPWdncOMMoeRP6L03U4bD3X2Afn2_uDn_2Vxd_7g8_3bV2Jaq0iimuWOcC2VlxwfJtSNUMGrBSzFwaSgAY8R6zwQzvCOtUJ3RRA-MUNkSfoBOt7lLig9r7ayfx2xhmmp1cc09k4p2jDHNKj35j97HNYVaXVWyjkzqVlX1eatsijkn8P2Sxtmkp56S_nkPveh3e6j2eJe4DjO4F_l38BV82YJsx1KnH8Obaa_ix5j-wX5xnv8GzDadtw</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Hu, Qiaobo</creator><creator>Li, Yanlong</creator><creator>Sun, Xiaofeng</creator><creator>Chen, Mingtao</creator><creator>Bu, Qingtao</creator><creator>Gong, Bin</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2859-2960</orcidid><orcidid>https://orcid.org/0000-0002-8951-749X</orcidid></search><sort><creationdate>20230201</creationdate><title>Integrating test device and method for creep failure and ultrasonic response of methane hydrate-bearing sediments</title><author>Hu, Qiaobo ; Li, Yanlong ; Sun, Xiaofeng ; Chen, Mingtao ; Bu, Qingtao ; Gong, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-8293d23358c763b739d01521cef75b37a1ee220cff252a3604586a909b2017403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Axial loads</topic><topic>Axial stress</topic><topic>Confining</topic><topic>Creep strength</topic><topic>Data collection</topic><topic>Deformation</topic><topic>Exploitation</topic><topic>Failure analysis</topic><topic>Geophysical methods</topic><topic>High pressure</topic><topic>Low temperature</topic><topic>Methane hydrates</topic><topic>Pressure chambers</topic><topic>Reservoirs</topic><topic>Sediments</topic><topic>Stability analysis</topic><topic>Strain</topic><topic>Stress-strain relationships</topic><topic>Testing time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Qiaobo</creatorcontrib><creatorcontrib>Li, Yanlong</creatorcontrib><creatorcontrib>Sun, Xiaofeng</creatorcontrib><creatorcontrib>Chen, Mingtao</creatorcontrib><creatorcontrib>Bu, Qingtao</creatorcontrib><creatorcontrib>Gong, Bin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Qiaobo</au><au>Li, Yanlong</au><au>Sun, Xiaofeng</au><au>Chen, Mingtao</au><au>Bu, Qingtao</au><au>Gong, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating test device and method for creep failure and ultrasonic response of methane hydrate-bearing sediments</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>94</volume><issue>2</issue><spage>025105</spage><epage>025105</epage><pages>025105-025105</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>Clarifying the creep behaviors of hydrate-bearing sediment (HBS) under long-term loading is crucial for evaluating reservoir stability during hydrate exploitation. Figuring out a way of characterizing deformation behaviors and their geophysical responses to HBS is the basis for modeling creep behaviors. In this study, we propose a novel device to test time-dependent deformation and the ultrasonic response of HBS under high-pressure and low-temperature. The experimental device consists of a high-pressure chamber, an axial-load control system, a confining pressure system, a pore pressure system, a back-pressure system, and a data collection system. This testing assembly allows temperature regulation and independent control of four pressures, e.g., confining pressure, pore pressure, back pressure, and axial loading. Columned artificial HBS samples, with a diameter of 39 mm and a height of 120 mm, can be synthesized in this device. Afterward, in situ creep experiments can be achieved by applying stable confining pressure and axial load, together with geophysical signals acquisition. During loading, the stress–strain relationships and ultrasonic data can be obtained simultaneously. Through analyzing the stress–strain relationship and ultrasonic data, the macroscopical failure and microcosmical creep deformation law of the samples can be figured out. Preliminary experiments verified the applicability of the device. The method provides some significance for field observation of reservoir failure via geophysical techniques during hydrate exploitation.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>36859031</pmid><doi>10.1063/5.0133198</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2859-2960</orcidid><orcidid>https://orcid.org/0000-0002-8951-749X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2023-02, Vol.94 (2), p.025105-025105 |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0133198 |
source | AIP Journals; Alma/SFX Local Collection |
subjects | Axial loads Axial stress Confining Creep strength Data collection Deformation Exploitation Failure analysis Geophysical methods High pressure Low temperature Methane hydrates Pressure chambers Reservoirs Sediments Stability analysis Strain Stress-strain relationships Testing time |
title | Integrating test device and method for creep failure and ultrasonic response of methane hydrate-bearing sediments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T18%3A01%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20test%20device%20and%20method%20for%20creep%20failure%20and%20ultrasonic%20response%20of%20methane%20hydrate-bearing%20sediments&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Hu,%20Qiaobo&rft.date=2023-02-01&rft.volume=94&rft.issue=2&rft.spage=025105&rft.epage=025105&rft.pages=025105-025105&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/5.0133198&rft_dat=%3Cproquest_scita%3E2781622292%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775117948&rft_id=info:pmid/36859031&rfr_iscdi=true |