Entropy models of network infrastructures

Currently, it is quite common to use entropy to describe complex systems in various fields. The report is devoted to the problems of using differential entropy (hereinafter entropy) for network structures. Let’s imagine the network structure as a continuous random vector. It is known that the entrop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Tyrsin, A. N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2624
creator Tyrsin, A. N.
description Currently, it is quite common to use entropy to describe complex systems in various fields. The report is devoted to the problems of using differential entropy (hereinafter entropy) for network structures. Let’s imagine the network structure as a continuous random vector. It is known that the entropy a continuous random vector can be decomposed into two components - the entropy of randomness and the entropy of self-organization. For network structures, along with the assessment of entropy itself, other entropy characteristics will be useful, such as the entropy of the relationship between several subsystems and the entropy of the system in a separate vertex. The entropy of the relationship between several subsystems and the entropy of the system in a separate vertex will allow us to investigate network structures: to assess the interconnectedness of different sections between each other, as well as to assess how entropy changes within such systems.
doi_str_mv 10.1063/5.0132225
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0132225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2906022650</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-e5299ac9459a09fcd8db08e50ab149f1631b29fc2eaed4ab355a9decb74121013</originalsourceid><addsrcrecordid>eNotkE1Lw0AYhBdRMFYP_oOAJ4XU9333I9mjlPoBBS8K3pZNsoHUNht3N0j_vZH2NDA8zAzD2C3CEkHxR7kE5EQkz1iGUmJRKlTnLAPQoiDBvy7ZVYxbANJlWWXsfj2k4MdDvvet28Xcd_ng0q8P33k_dMHGFKYmTcHFa3bR2V10NyddsM_n9cfqtdi8v7ytnjbFiJynwknS2jZaSG1Bd01btTVUToKtUegOFceaZp-cda2wNZfS6tY1dSmQcB6_YHfH3DH4n8nFZLZ-CsNcaUiDAiIlYaYejlRs-mRT7wczhn5vw8EgmP8rjDSnK_gfcgVPxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2906022650</pqid></control><display><type>conference_proceeding</type><title>Entropy models of network infrastructures</title><source>AIP Journals Complete</source><creator>Tyrsin, A. N.</creator><contributor>A.G., Galkin ; S.V., Bushuev</contributor><creatorcontrib>Tyrsin, A. N. ; A.G., Galkin ; S.V., Bushuev</creatorcontrib><description>Currently, it is quite common to use entropy to describe complex systems in various fields. The report is devoted to the problems of using differential entropy (hereinafter entropy) for network structures. Let’s imagine the network structure as a continuous random vector. It is known that the entropy a continuous random vector can be decomposed into two components - the entropy of randomness and the entropy of self-organization. For network structures, along with the assessment of entropy itself, other entropy characteristics will be useful, such as the entropy of the relationship between several subsystems and the entropy of the system in a separate vertex. The entropy of the relationship between several subsystems and the entropy of the system in a separate vertex will allow us to investigate network structures: to assess the interconnectedness of different sections between each other, as well as to assess how entropy changes within such systems.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0132225</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Complex systems ; Entropy ; Subsystems</subject><ispartof>AIP Conference Proceedings, 2023, Vol.2624 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0132225$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,795,4513,23935,23936,25145,27929,27930,76389</link.rule.ids></links><search><contributor>A.G., Galkin</contributor><contributor>S.V., Bushuev</contributor><creatorcontrib>Tyrsin, A. N.</creatorcontrib><title>Entropy models of network infrastructures</title><title>AIP Conference Proceedings</title><description>Currently, it is quite common to use entropy to describe complex systems in various fields. The report is devoted to the problems of using differential entropy (hereinafter entropy) for network structures. Let’s imagine the network structure as a continuous random vector. It is known that the entropy a continuous random vector can be decomposed into two components - the entropy of randomness and the entropy of self-organization. For network structures, along with the assessment of entropy itself, other entropy characteristics will be useful, such as the entropy of the relationship between several subsystems and the entropy of the system in a separate vertex. The entropy of the relationship between several subsystems and the entropy of the system in a separate vertex will allow us to investigate network structures: to assess the interconnectedness of different sections between each other, as well as to assess how entropy changes within such systems.</description><subject>Complex systems</subject><subject>Entropy</subject><subject>Subsystems</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1Lw0AYhBdRMFYP_oOAJ4XU9333I9mjlPoBBS8K3pZNsoHUNht3N0j_vZH2NDA8zAzD2C3CEkHxR7kE5EQkz1iGUmJRKlTnLAPQoiDBvy7ZVYxbANJlWWXsfj2k4MdDvvet28Xcd_ng0q8P33k_dMHGFKYmTcHFa3bR2V10NyddsM_n9cfqtdi8v7ytnjbFiJynwknS2jZaSG1Bd01btTVUToKtUegOFceaZp-cda2wNZfS6tY1dSmQcB6_YHfH3DH4n8nFZLZ-CsNcaUiDAiIlYaYejlRs-mRT7wczhn5vw8EgmP8rjDSnK_gfcgVPxw</recordid><startdate>20231226</startdate><enddate>20231226</enddate><creator>Tyrsin, A. N.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231226</creationdate><title>Entropy models of network infrastructures</title><author>Tyrsin, A. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-e5299ac9459a09fcd8db08e50ab149f1631b29fc2eaed4ab355a9decb74121013</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Complex systems</topic><topic>Entropy</topic><topic>Subsystems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tyrsin, A. N.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tyrsin, A. N.</au><au>A.G., Galkin</au><au>S.V., Bushuev</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Entropy models of network infrastructures</atitle><btitle>AIP Conference Proceedings</btitle><date>2023-12-26</date><risdate>2023</risdate><volume>2624</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Currently, it is quite common to use entropy to describe complex systems in various fields. The report is devoted to the problems of using differential entropy (hereinafter entropy) for network structures. Let’s imagine the network structure as a continuous random vector. It is known that the entropy a continuous random vector can be decomposed into two components - the entropy of randomness and the entropy of self-organization. For network structures, along with the assessment of entropy itself, other entropy characteristics will be useful, such as the entropy of the relationship between several subsystems and the entropy of the system in a separate vertex. The entropy of the relationship between several subsystems and the entropy of the system in a separate vertex will allow us to investigate network structures: to assess the interconnectedness of different sections between each other, as well as to assess how entropy changes within such systems.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0132225</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2023, Vol.2624 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0132225
source AIP Journals Complete
subjects Complex systems
Entropy
Subsystems
title Entropy models of network infrastructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T14%3A49%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Entropy%20models%20of%20network%20infrastructures&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Tyrsin,%20A.%20N.&rft.date=2023-12-26&rft.volume=2624&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0132225&rft_dat=%3Cproquest_scita%3E2906022650%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2906022650&rft_id=info:pmid/&rfr_iscdi=true