Evaluation of radar polarimetric variables for improved quantitative precipitation estimates
The selection of appropriate function forms linking the radar-based polarimetric variables and quantitative precipitation estimates (QPEs) is critical for the estimation of precipitation accurately. In this study, several functional forms using nonlinear optimization and artificial neural networks a...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2654 |
creator | Huda, M. Wiji Nur Mawandha, Hanggar Ganara Ni’mah, Khafidzotun Setyawan, Chandra Ngadisih, Ngadisih Oishi, Satoru Teegavarapu, Ramesh S. V. |
description | The selection of appropriate function forms linking the radar-based polarimetric variables and quantitative precipitation estimates (QPEs) is critical for the estimation of precipitation accurately. In this study, several functional forms using nonlinear optimization and artificial neural networks are evaluated. The polarimetric variables including radar reflectivity factor (ZH), differential reflectivity factor (ZDR), and specific differential propagation phase (KDP) values are obtained from an X-band multiparameter radar (XMPR) recently installed in a Yogyakarta region, Indonesia. The region experiences highly variable rainfall with mostly frontal rainfall events confined to December to March. Observed precipitation data available from a sparse rain network in this region is used for comparative evaluation of the rainfall rates. Rain gauge data for three years (2016-2018) are used for the assessment. Results from the analysis suggest that improved estimates of rainfall at finer temporal resolutions of 10 minutes can be obtained using functional forms developed with the optimization of polarimetric thresholds when adequate observed rainfall data and polarimetric variables are available. Furthermore, the use of the multiple linear, stepwise regression model and neural networks approach can measure the sensitivity of the functional forms used for rainfall rate estimates. Local models based on specific temporal windows (e.g., month or a season) can help improve the functional forms and therefore rainfall rate estimates. |
doi_str_mv | 10.1063/5.0128613 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0128613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2776264285</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1683-8ff482aa36f70850110b4e9510cfd4e22d0f75f55bf80653de92156887b3ecec3</originalsourceid><addsrcrecordid>eNotUEtLxDAQDqLgunrwHwS8CV0nSfPoURZfsOBFwYMQ0nYCWbrbbtIW_PdGd08zA998L0JuGawYKPEgV8C4UUyckQWTkhVaMXVOFgBVWfBSfF2Sq5S2ALzS2izI99PsusmNod_T3tPoWhfp0Hcuhh2OMTR0zqurO0zU95GG3RD7GVt6mNx-DGP-nJEOEZsw_F-ZB9MYdm7EdE0uvOsS3pzmknw-P32sX4vN-8vb-nFTDEwZURjvS8OdE8prMBIYg7rESjJofFsi5y14Lb2UtTegpGix4kwqY3QtsMFGLMndkTd7O0xZ3m77Ke6zpOVaK65KbmRG3R9RqTk5tUNO6eKPZWD_2rPSntoTv8E7Yts</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2776264285</pqid></control><display><type>conference_proceeding</type><title>Evaluation of radar polarimetric variables for improved quantitative precipitation estimates</title><source>AIP Journals Complete</source><creator>Huda, M. Wiji Nur ; Mawandha, Hanggar Ganara ; Ni’mah, Khafidzotun ; Setyawan, Chandra ; Ngadisih, Ngadisih ; Oishi, Satoru ; Teegavarapu, Ramesh S. V.</creator><contributor>Santos, Gil Nonato C. ; Putri, Ratih Fitria ; Tristan, Abraham Cardenas ; Omar, Rohayu Che ; Widodo ; Yokozeki, Tomohiro ; Mustika, I Wayan</contributor><creatorcontrib>Huda, M. Wiji Nur ; Mawandha, Hanggar Ganara ; Ni’mah, Khafidzotun ; Setyawan, Chandra ; Ngadisih, Ngadisih ; Oishi, Satoru ; Teegavarapu, Ramesh S. V. ; Santos, Gil Nonato C. ; Putri, Ratih Fitria ; Tristan, Abraham Cardenas ; Omar, Rohayu Che ; Widodo ; Yokozeki, Tomohiro ; Mustika, I Wayan</creatorcontrib><description>The selection of appropriate function forms linking the radar-based polarimetric variables and quantitative precipitation estimates (QPEs) is critical for the estimation of precipitation accurately. In this study, several functional forms using nonlinear optimization and artificial neural networks are evaluated. The polarimetric variables including radar reflectivity factor (ZH), differential reflectivity factor (ZDR), and specific differential propagation phase (KDP) values are obtained from an X-band multiparameter radar (XMPR) recently installed in a Yogyakarta region, Indonesia. The region experiences highly variable rainfall with mostly frontal rainfall events confined to December to March. Observed precipitation data available from a sparse rain network in this region is used for comparative evaluation of the rainfall rates. Rain gauge data for three years (2016-2018) are used for the assessment. Results from the analysis suggest that improved estimates of rainfall at finer temporal resolutions of 10 minutes can be obtained using functional forms developed with the optimization of polarimetric thresholds when adequate observed rainfall data and polarimetric variables are available. Furthermore, the use of the multiple linear, stepwise regression model and neural networks approach can measure the sensitivity of the functional forms used for rainfall rate estimates. Local models based on specific temporal windows (e.g., month or a season) can help improve the functional forms and therefore rainfall rate estimates.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0128613</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial neural networks ; Estimates ; Evaluation ; Neural networks ; Optimization ; Polarimetry ; Precipitation ; Radar ; Rain gauges ; Rainfall ; Reflectance ; Regression models ; Superhigh frequencies ; Variables</subject><ispartof>AIP conference proceedings, 2023, Vol.2654 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0128613$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76353</link.rule.ids></links><search><contributor>Santos, Gil Nonato C.</contributor><contributor>Putri, Ratih Fitria</contributor><contributor>Tristan, Abraham Cardenas</contributor><contributor>Omar, Rohayu Che</contributor><contributor>Widodo</contributor><contributor>Yokozeki, Tomohiro</contributor><contributor>Mustika, I Wayan</contributor><creatorcontrib>Huda, M. Wiji Nur</creatorcontrib><creatorcontrib>Mawandha, Hanggar Ganara</creatorcontrib><creatorcontrib>Ni’mah, Khafidzotun</creatorcontrib><creatorcontrib>Setyawan, Chandra</creatorcontrib><creatorcontrib>Ngadisih, Ngadisih</creatorcontrib><creatorcontrib>Oishi, Satoru</creatorcontrib><creatorcontrib>Teegavarapu, Ramesh S. V.</creatorcontrib><title>Evaluation of radar polarimetric variables for improved quantitative precipitation estimates</title><title>AIP conference proceedings</title><description>The selection of appropriate function forms linking the radar-based polarimetric variables and quantitative precipitation estimates (QPEs) is critical for the estimation of precipitation accurately. In this study, several functional forms using nonlinear optimization and artificial neural networks are evaluated. The polarimetric variables including radar reflectivity factor (ZH), differential reflectivity factor (ZDR), and specific differential propagation phase (KDP) values are obtained from an X-band multiparameter radar (XMPR) recently installed in a Yogyakarta region, Indonesia. The region experiences highly variable rainfall with mostly frontal rainfall events confined to December to March. Observed precipitation data available from a sparse rain network in this region is used for comparative evaluation of the rainfall rates. Rain gauge data for three years (2016-2018) are used for the assessment. Results from the analysis suggest that improved estimates of rainfall at finer temporal resolutions of 10 minutes can be obtained using functional forms developed with the optimization of polarimetric thresholds when adequate observed rainfall data and polarimetric variables are available. Furthermore, the use of the multiple linear, stepwise regression model and neural networks approach can measure the sensitivity of the functional forms used for rainfall rate estimates. Local models based on specific temporal windows (e.g., month or a season) can help improve the functional forms and therefore rainfall rate estimates.</description><subject>Artificial neural networks</subject><subject>Estimates</subject><subject>Evaluation</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Polarimetry</subject><subject>Precipitation</subject><subject>Radar</subject><subject>Rain gauges</subject><subject>Rainfall</subject><subject>Reflectance</subject><subject>Regression models</subject><subject>Superhigh frequencies</subject><subject>Variables</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotUEtLxDAQDqLgunrwHwS8CV0nSfPoURZfsOBFwYMQ0nYCWbrbbtIW_PdGd08zA998L0JuGawYKPEgV8C4UUyckQWTkhVaMXVOFgBVWfBSfF2Sq5S2ALzS2izI99PsusmNod_T3tPoWhfp0Hcuhh2OMTR0zqurO0zU95GG3RD7GVt6mNx-DGP-nJEOEZsw_F-ZB9MYdm7EdE0uvOsS3pzmknw-P32sX4vN-8vb-nFTDEwZURjvS8OdE8prMBIYg7rESjJofFsi5y14Lb2UtTegpGix4kwqY3QtsMFGLMndkTd7O0xZ3m77Ke6zpOVaK65KbmRG3R9RqTk5tUNO6eKPZWD_2rPSntoTv8E7Yts</recordid><startdate>20230214</startdate><enddate>20230214</enddate><creator>Huda, M. Wiji Nur</creator><creator>Mawandha, Hanggar Ganara</creator><creator>Ni’mah, Khafidzotun</creator><creator>Setyawan, Chandra</creator><creator>Ngadisih, Ngadisih</creator><creator>Oishi, Satoru</creator><creator>Teegavarapu, Ramesh S. V.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230214</creationdate><title>Evaluation of radar polarimetric variables for improved quantitative precipitation estimates</title><author>Huda, M. Wiji Nur ; Mawandha, Hanggar Ganara ; Ni’mah, Khafidzotun ; Setyawan, Chandra ; Ngadisih, Ngadisih ; Oishi, Satoru ; Teegavarapu, Ramesh S. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1683-8ff482aa36f70850110b4e9510cfd4e22d0f75f55bf80653de92156887b3ecec3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Estimates</topic><topic>Evaluation</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Polarimetry</topic><topic>Precipitation</topic><topic>Radar</topic><topic>Rain gauges</topic><topic>Rainfall</topic><topic>Reflectance</topic><topic>Regression models</topic><topic>Superhigh frequencies</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huda, M. Wiji Nur</creatorcontrib><creatorcontrib>Mawandha, Hanggar Ganara</creatorcontrib><creatorcontrib>Ni’mah, Khafidzotun</creatorcontrib><creatorcontrib>Setyawan, Chandra</creatorcontrib><creatorcontrib>Ngadisih, Ngadisih</creatorcontrib><creatorcontrib>Oishi, Satoru</creatorcontrib><creatorcontrib>Teegavarapu, Ramesh S. V.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huda, M. Wiji Nur</au><au>Mawandha, Hanggar Ganara</au><au>Ni’mah, Khafidzotun</au><au>Setyawan, Chandra</au><au>Ngadisih, Ngadisih</au><au>Oishi, Satoru</au><au>Teegavarapu, Ramesh S. V.</au><au>Santos, Gil Nonato C.</au><au>Putri, Ratih Fitria</au><au>Tristan, Abraham Cardenas</au><au>Omar, Rohayu Che</au><au>Widodo</au><au>Yokozeki, Tomohiro</au><au>Mustika, I Wayan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Evaluation of radar polarimetric variables for improved quantitative precipitation estimates</atitle><btitle>AIP conference proceedings</btitle><date>2023-02-14</date><risdate>2023</risdate><volume>2654</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The selection of appropriate function forms linking the radar-based polarimetric variables and quantitative precipitation estimates (QPEs) is critical for the estimation of precipitation accurately. In this study, several functional forms using nonlinear optimization and artificial neural networks are evaluated. The polarimetric variables including radar reflectivity factor (ZH), differential reflectivity factor (ZDR), and specific differential propagation phase (KDP) values are obtained from an X-band multiparameter radar (XMPR) recently installed in a Yogyakarta region, Indonesia. The region experiences highly variable rainfall with mostly frontal rainfall events confined to December to March. Observed precipitation data available from a sparse rain network in this region is used for comparative evaluation of the rainfall rates. Rain gauge data for three years (2016-2018) are used for the assessment. Results from the analysis suggest that improved estimates of rainfall at finer temporal resolutions of 10 minutes can be obtained using functional forms developed with the optimization of polarimetric thresholds when adequate observed rainfall data and polarimetric variables are available. Furthermore, the use of the multiple linear, stepwise regression model and neural networks approach can measure the sensitivity of the functional forms used for rainfall rate estimates. Local models based on specific temporal windows (e.g., month or a season) can help improve the functional forms and therefore rainfall rate estimates.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0128613</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2023, Vol.2654 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0128613 |
source | AIP Journals Complete |
subjects | Artificial neural networks Estimates Evaluation Neural networks Optimization Polarimetry Precipitation Radar Rain gauges Rainfall Reflectance Regression models Superhigh frequencies Variables |
title | Evaluation of radar polarimetric variables for improved quantitative precipitation estimates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T18%3A31%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Evaluation%20of%20radar%20polarimetric%20variables%20for%20improved%20quantitative%20precipitation%20estimates&rft.btitle=AIP%20conference%20proceedings&rft.au=Huda,%20M.%20Wiji%20Nur&rft.date=2023-02-14&rft.volume=2654&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0128613&rft_dat=%3Cproquest_scita%3E2776264285%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2776264285&rft_id=info:pmid/&rfr_iscdi=true |