Evaluation of radar polarimetric variables for improved quantitative precipitation estimates

The selection of appropriate function forms linking the radar-based polarimetric variables and quantitative precipitation estimates (QPEs) is critical for the estimation of precipitation accurately. In this study, several functional forms using nonlinear optimization and artificial neural networks a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Huda, M. Wiji Nur, Mawandha, Hanggar Ganara, Ni’mah, Khafidzotun, Setyawan, Chandra, Ngadisih, Ngadisih, Oishi, Satoru, Teegavarapu, Ramesh S. V.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2654
creator Huda, M. Wiji Nur
Mawandha, Hanggar Ganara
Ni’mah, Khafidzotun
Setyawan, Chandra
Ngadisih, Ngadisih
Oishi, Satoru
Teegavarapu, Ramesh S. V.
description The selection of appropriate function forms linking the radar-based polarimetric variables and quantitative precipitation estimates (QPEs) is critical for the estimation of precipitation accurately. In this study, several functional forms using nonlinear optimization and artificial neural networks are evaluated. The polarimetric variables including radar reflectivity factor (ZH), differential reflectivity factor (ZDR), and specific differential propagation phase (KDP) values are obtained from an X-band multiparameter radar (XMPR) recently installed in a Yogyakarta region, Indonesia. The region experiences highly variable rainfall with mostly frontal rainfall events confined to December to March. Observed precipitation data available from a sparse rain network in this region is used for comparative evaluation of the rainfall rates. Rain gauge data for three years (2016-2018) are used for the assessment. Results from the analysis suggest that improved estimates of rainfall at finer temporal resolutions of 10 minutes can be obtained using functional forms developed with the optimization of polarimetric thresholds when adequate observed rainfall data and polarimetric variables are available. Furthermore, the use of the multiple linear, stepwise regression model and neural networks approach can measure the sensitivity of the functional forms used for rainfall rate estimates. Local models based on specific temporal windows (e.g., month or a season) can help improve the functional forms and therefore rainfall rate estimates.
doi_str_mv 10.1063/5.0128613
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0128613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2776264285</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1683-8ff482aa36f70850110b4e9510cfd4e22d0f75f55bf80653de92156887b3ecec3</originalsourceid><addsrcrecordid>eNotUEtLxDAQDqLgunrwHwS8CV0nSfPoURZfsOBFwYMQ0nYCWbrbbtIW_PdGd08zA998L0JuGawYKPEgV8C4UUyckQWTkhVaMXVOFgBVWfBSfF2Sq5S2ALzS2izI99PsusmNod_T3tPoWhfp0Hcuhh2OMTR0zqurO0zU95GG3RD7GVt6mNx-DGP-nJEOEZsw_F-ZB9MYdm7EdE0uvOsS3pzmknw-P32sX4vN-8vb-nFTDEwZURjvS8OdE8prMBIYg7rESjJofFsi5y14Lb2UtTegpGix4kwqY3QtsMFGLMndkTd7O0xZ3m77Ke6zpOVaK65KbmRG3R9RqTk5tUNO6eKPZWD_2rPSntoTv8E7Yts</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2776264285</pqid></control><display><type>conference_proceeding</type><title>Evaluation of radar polarimetric variables for improved quantitative precipitation estimates</title><source>AIP Journals Complete</source><creator>Huda, M. Wiji Nur ; Mawandha, Hanggar Ganara ; Ni’mah, Khafidzotun ; Setyawan, Chandra ; Ngadisih, Ngadisih ; Oishi, Satoru ; Teegavarapu, Ramesh S. V.</creator><contributor>Santos, Gil Nonato C. ; Putri, Ratih Fitria ; Tristan, Abraham Cardenas ; Omar, Rohayu Che ; Widodo ; Yokozeki, Tomohiro ; Mustika, I Wayan</contributor><creatorcontrib>Huda, M. Wiji Nur ; Mawandha, Hanggar Ganara ; Ni’mah, Khafidzotun ; Setyawan, Chandra ; Ngadisih, Ngadisih ; Oishi, Satoru ; Teegavarapu, Ramesh S. V. ; Santos, Gil Nonato C. ; Putri, Ratih Fitria ; Tristan, Abraham Cardenas ; Omar, Rohayu Che ; Widodo ; Yokozeki, Tomohiro ; Mustika, I Wayan</creatorcontrib><description>The selection of appropriate function forms linking the radar-based polarimetric variables and quantitative precipitation estimates (QPEs) is critical for the estimation of precipitation accurately. In this study, several functional forms using nonlinear optimization and artificial neural networks are evaluated. The polarimetric variables including radar reflectivity factor (ZH), differential reflectivity factor (ZDR), and specific differential propagation phase (KDP) values are obtained from an X-band multiparameter radar (XMPR) recently installed in a Yogyakarta region, Indonesia. The region experiences highly variable rainfall with mostly frontal rainfall events confined to December to March. Observed precipitation data available from a sparse rain network in this region is used for comparative evaluation of the rainfall rates. Rain gauge data for three years (2016-2018) are used for the assessment. Results from the analysis suggest that improved estimates of rainfall at finer temporal resolutions of 10 minutes can be obtained using functional forms developed with the optimization of polarimetric thresholds when adequate observed rainfall data and polarimetric variables are available. Furthermore, the use of the multiple linear, stepwise regression model and neural networks approach can measure the sensitivity of the functional forms used for rainfall rate estimates. Local models based on specific temporal windows (e.g., month or a season) can help improve the functional forms and therefore rainfall rate estimates.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0128613</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Artificial neural networks ; Estimates ; Evaluation ; Neural networks ; Optimization ; Polarimetry ; Precipitation ; Radar ; Rain gauges ; Rainfall ; Reflectance ; Regression models ; Superhigh frequencies ; Variables</subject><ispartof>AIP conference proceedings, 2023, Vol.2654 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0128613$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76353</link.rule.ids></links><search><contributor>Santos, Gil Nonato C.</contributor><contributor>Putri, Ratih Fitria</contributor><contributor>Tristan, Abraham Cardenas</contributor><contributor>Omar, Rohayu Che</contributor><contributor>Widodo</contributor><contributor>Yokozeki, Tomohiro</contributor><contributor>Mustika, I Wayan</contributor><creatorcontrib>Huda, M. Wiji Nur</creatorcontrib><creatorcontrib>Mawandha, Hanggar Ganara</creatorcontrib><creatorcontrib>Ni’mah, Khafidzotun</creatorcontrib><creatorcontrib>Setyawan, Chandra</creatorcontrib><creatorcontrib>Ngadisih, Ngadisih</creatorcontrib><creatorcontrib>Oishi, Satoru</creatorcontrib><creatorcontrib>Teegavarapu, Ramesh S. V.</creatorcontrib><title>Evaluation of radar polarimetric variables for improved quantitative precipitation estimates</title><title>AIP conference proceedings</title><description>The selection of appropriate function forms linking the radar-based polarimetric variables and quantitative precipitation estimates (QPEs) is critical for the estimation of precipitation accurately. In this study, several functional forms using nonlinear optimization and artificial neural networks are evaluated. The polarimetric variables including radar reflectivity factor (ZH), differential reflectivity factor (ZDR), and specific differential propagation phase (KDP) values are obtained from an X-band multiparameter radar (XMPR) recently installed in a Yogyakarta region, Indonesia. The region experiences highly variable rainfall with mostly frontal rainfall events confined to December to March. Observed precipitation data available from a sparse rain network in this region is used for comparative evaluation of the rainfall rates. Rain gauge data for three years (2016-2018) are used for the assessment. Results from the analysis suggest that improved estimates of rainfall at finer temporal resolutions of 10 minutes can be obtained using functional forms developed with the optimization of polarimetric thresholds when adequate observed rainfall data and polarimetric variables are available. Furthermore, the use of the multiple linear, stepwise regression model and neural networks approach can measure the sensitivity of the functional forms used for rainfall rate estimates. Local models based on specific temporal windows (e.g., month or a season) can help improve the functional forms and therefore rainfall rate estimates.</description><subject>Artificial neural networks</subject><subject>Estimates</subject><subject>Evaluation</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Polarimetry</subject><subject>Precipitation</subject><subject>Radar</subject><subject>Rain gauges</subject><subject>Rainfall</subject><subject>Reflectance</subject><subject>Regression models</subject><subject>Superhigh frequencies</subject><subject>Variables</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotUEtLxDAQDqLgunrwHwS8CV0nSfPoURZfsOBFwYMQ0nYCWbrbbtIW_PdGd08zA998L0JuGawYKPEgV8C4UUyckQWTkhVaMXVOFgBVWfBSfF2Sq5S2ALzS2izI99PsusmNod_T3tPoWhfp0Hcuhh2OMTR0zqurO0zU95GG3RD7GVt6mNx-DGP-nJEOEZsw_F-ZB9MYdm7EdE0uvOsS3pzmknw-P32sX4vN-8vb-nFTDEwZURjvS8OdE8prMBIYg7rESjJofFsi5y14Lb2UtTegpGix4kwqY3QtsMFGLMndkTd7O0xZ3m77Ke6zpOVaK65KbmRG3R9RqTk5tUNO6eKPZWD_2rPSntoTv8E7Yts</recordid><startdate>20230214</startdate><enddate>20230214</enddate><creator>Huda, M. Wiji Nur</creator><creator>Mawandha, Hanggar Ganara</creator><creator>Ni’mah, Khafidzotun</creator><creator>Setyawan, Chandra</creator><creator>Ngadisih, Ngadisih</creator><creator>Oishi, Satoru</creator><creator>Teegavarapu, Ramesh S. V.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230214</creationdate><title>Evaluation of radar polarimetric variables for improved quantitative precipitation estimates</title><author>Huda, M. Wiji Nur ; Mawandha, Hanggar Ganara ; Ni’mah, Khafidzotun ; Setyawan, Chandra ; Ngadisih, Ngadisih ; Oishi, Satoru ; Teegavarapu, Ramesh S. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1683-8ff482aa36f70850110b4e9510cfd4e22d0f75f55bf80653de92156887b3ecec3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Estimates</topic><topic>Evaluation</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Polarimetry</topic><topic>Precipitation</topic><topic>Radar</topic><topic>Rain gauges</topic><topic>Rainfall</topic><topic>Reflectance</topic><topic>Regression models</topic><topic>Superhigh frequencies</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huda, M. Wiji Nur</creatorcontrib><creatorcontrib>Mawandha, Hanggar Ganara</creatorcontrib><creatorcontrib>Ni’mah, Khafidzotun</creatorcontrib><creatorcontrib>Setyawan, Chandra</creatorcontrib><creatorcontrib>Ngadisih, Ngadisih</creatorcontrib><creatorcontrib>Oishi, Satoru</creatorcontrib><creatorcontrib>Teegavarapu, Ramesh S. V.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huda, M. Wiji Nur</au><au>Mawandha, Hanggar Ganara</au><au>Ni’mah, Khafidzotun</au><au>Setyawan, Chandra</au><au>Ngadisih, Ngadisih</au><au>Oishi, Satoru</au><au>Teegavarapu, Ramesh S. V.</au><au>Santos, Gil Nonato C.</au><au>Putri, Ratih Fitria</au><au>Tristan, Abraham Cardenas</au><au>Omar, Rohayu Che</au><au>Widodo</au><au>Yokozeki, Tomohiro</au><au>Mustika, I Wayan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Evaluation of radar polarimetric variables for improved quantitative precipitation estimates</atitle><btitle>AIP conference proceedings</btitle><date>2023-02-14</date><risdate>2023</risdate><volume>2654</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The selection of appropriate function forms linking the radar-based polarimetric variables and quantitative precipitation estimates (QPEs) is critical for the estimation of precipitation accurately. In this study, several functional forms using nonlinear optimization and artificial neural networks are evaluated. The polarimetric variables including radar reflectivity factor (ZH), differential reflectivity factor (ZDR), and specific differential propagation phase (KDP) values are obtained from an X-band multiparameter radar (XMPR) recently installed in a Yogyakarta region, Indonesia. The region experiences highly variable rainfall with mostly frontal rainfall events confined to December to March. Observed precipitation data available from a sparse rain network in this region is used for comparative evaluation of the rainfall rates. Rain gauge data for three years (2016-2018) are used for the assessment. Results from the analysis suggest that improved estimates of rainfall at finer temporal resolutions of 10 minutes can be obtained using functional forms developed with the optimization of polarimetric thresholds when adequate observed rainfall data and polarimetric variables are available. Furthermore, the use of the multiple linear, stepwise regression model and neural networks approach can measure the sensitivity of the functional forms used for rainfall rate estimates. Local models based on specific temporal windows (e.g., month or a season) can help improve the functional forms and therefore rainfall rate estimates.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0128613</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2654 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0128613
source AIP Journals Complete
subjects Artificial neural networks
Estimates
Evaluation
Neural networks
Optimization
Polarimetry
Precipitation
Radar
Rain gauges
Rainfall
Reflectance
Regression models
Superhigh frequencies
Variables
title Evaluation of radar polarimetric variables for improved quantitative precipitation estimates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T18%3A31%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Evaluation%20of%20radar%20polarimetric%20variables%20for%20improved%20quantitative%20precipitation%20estimates&rft.btitle=AIP%20conference%20proceedings&rft.au=Huda,%20M.%20Wiji%20Nur&rft.date=2023-02-14&rft.volume=2654&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0128613&rft_dat=%3Cproquest_scita%3E2776264285%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2776264285&rft_id=info:pmid/&rfr_iscdi=true