The low-cyclic fatigue response and its dependence of specific surface area for open-cell nanoporous Cu
We systematically study the low cycle fatigue behavior and its dependence of specific surface area ( ζ) for nanoporous copper (NPC) under ultrahigh strain rate ( γ ˙ ≈ 10 9 s − 1) cyclic shear loading by conducting large-scale molecular dynamic simulation and small-angle x-ray scattering analysis. W...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2023-02, Vol.133 (6) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 133 |
creator | Bi, W. B. Wang, Y. F. Zhang, X. M. Deng, L. Tang, J. F. Zhao, F. Wang, L. |
description | We systematically study the low cycle fatigue behavior and its dependence of specific surface area (
ζ) for nanoporous copper (NPC) under ultrahigh strain rate (
γ
˙
≈
10
9 s
−
1) cyclic shear loading by conducting large-scale molecular dynamic simulation and small-angle x-ray scattering analysis. With an increase in
ζ, NPC undergoes a transition from the first excellent anti-fatigue property (
ζ
<
1.24
nm
−
1) to the subsequent easy-to-fatigue capacity (
ζ
≥
1.24
nm
−
1). Two different mechanisms are governing fatigue: (i) smooth nucleation and propagation of dislocations for the former and (ii) nanopore compaction/coalescence for the latter by prohibiting the activities of dislocations. For NPC with
ζ
=
0.42
nm
−
1, fatigue contributes to a surprising superelasticity, prompted by the entanglements and reversed disentanglements of longer dislocations. Surface reconstruction contributes to the fatigue tolerance of NPC by facilitating local surface roughening and the emission of dislocation slips, and it becomes more pronounced with decreasing
ζ. |
doi_str_mv | 10.1063/5.0128574 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0128574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2774339024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-e42b042b870e4fa2d240373d6288a2a14fc9243dd686ac9d031fa5ce60263c63</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgCq6rB_9BwJNCdZK0aXuUxS9Y8LL3EJPJ2qUmNWmV_fdGdtGD4GEYGJ6ZgZeQcwbXDKS4qa6B8aaqywMyY9C0RV1VcEhmAJwVTVu3x-QkpQ0AY41oZ2S9ekXah8_CbE3fGer02K0npBHTEHxCqr2l3ZioxQG9RW-QBkfTgKZz2acpOp1nOqKmLkQaMisM9j312ochxDAluphOyZHTfcKzfZ-T1f3davFYLJ8fnha3y8IIyccCS_4CuZoasHSaW16CqIWVvGk016x0puWlsFY2UpvWgmBOVwYlcCmMFHNysTs7xPA-YRrVJkzR54-K13UpRAt5fU4ud8rEkFJEp4bYvem4VQzUd4yqUvsYs73a2WS6MYcT_A_-CPEXqsG6__Dfy1-ya4CZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774339024</pqid></control><display><type>article</type><title>The low-cyclic fatigue response and its dependence of specific surface area for open-cell nanoporous Cu</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Bi, W. B. ; Wang, Y. F. ; Zhang, X. M. ; Deng, L. ; Tang, J. F. ; Zhao, F. ; Wang, L.</creator><creatorcontrib>Bi, W. B. ; Wang, Y. F. ; Zhang, X. M. ; Deng, L. ; Tang, J. F. ; Zhao, F. ; Wang, L.</creatorcontrib><description>We systematically study the low cycle fatigue behavior and its dependence of specific surface area (
ζ) for nanoporous copper (NPC) under ultrahigh strain rate (
γ
˙
≈
10
9 s
−
1) cyclic shear loading by conducting large-scale molecular dynamic simulation and small-angle x-ray scattering analysis. With an increase in
ζ, NPC undergoes a transition from the first excellent anti-fatigue property (
ζ
<
1.24
nm
−
1) to the subsequent easy-to-fatigue capacity (
ζ
≥
1.24
nm
−
1). Two different mechanisms are governing fatigue: (i) smooth nucleation and propagation of dislocations for the former and (ii) nanopore compaction/coalescence for the latter by prohibiting the activities of dislocations. For NPC with
ζ
=
0.42
nm
−
1, fatigue contributes to a surprising superelasticity, prompted by the entanglements and reversed disentanglements of longer dislocations. Surface reconstruction contributes to the fatigue tolerance of NPC by facilitating local surface roughening and the emission of dislocation slips, and it becomes more pronounced with decreasing
ζ.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0128574</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Copper ; Low cycle fatigue ; Molecular dynamics ; Nucleation ; Roughening ; Specific surface ; Strain rate ; Superelasticity ; Surface area ; X-ray scattering</subject><ispartof>Journal of applied physics, 2023-02, Vol.133 (6)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-e42b042b870e4fa2d240373d6288a2a14fc9243dd686ac9d031fa5ce60263c63</citedby><cites>FETCH-LOGICAL-c362t-e42b042b870e4fa2d240373d6288a2a14fc9243dd686ac9d031fa5ce60263c63</cites><orcidid>0000-0003-4866-3527 ; 0000-0001-5920-6140 ; 0000-0001-7260-7379 ; 0000-0002-0733-7410 ; 0000-0003-4484-9260 ; 0000-0003-0986-1213</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0128574$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4511,27923,27924,76255</link.rule.ids></links><search><creatorcontrib>Bi, W. B.</creatorcontrib><creatorcontrib>Wang, Y. F.</creatorcontrib><creatorcontrib>Zhang, X. M.</creatorcontrib><creatorcontrib>Deng, L.</creatorcontrib><creatorcontrib>Tang, J. F.</creatorcontrib><creatorcontrib>Zhao, F.</creatorcontrib><creatorcontrib>Wang, L.</creatorcontrib><title>The low-cyclic fatigue response and its dependence of specific surface area for open-cell nanoporous Cu</title><title>Journal of applied physics</title><description>We systematically study the low cycle fatigue behavior and its dependence of specific surface area (
ζ) for nanoporous copper (NPC) under ultrahigh strain rate (
γ
˙
≈
10
9 s
−
1) cyclic shear loading by conducting large-scale molecular dynamic simulation and small-angle x-ray scattering analysis. With an increase in
ζ, NPC undergoes a transition from the first excellent anti-fatigue property (
ζ
<
1.24
nm
−
1) to the subsequent easy-to-fatigue capacity (
ζ
≥
1.24
nm
−
1). Two different mechanisms are governing fatigue: (i) smooth nucleation and propagation of dislocations for the former and (ii) nanopore compaction/coalescence for the latter by prohibiting the activities of dislocations. For NPC with
ζ
=
0.42
nm
−
1, fatigue contributes to a surprising superelasticity, prompted by the entanglements and reversed disentanglements of longer dislocations. Surface reconstruction contributes to the fatigue tolerance of NPC by facilitating local surface roughening and the emission of dislocation slips, and it becomes more pronounced with decreasing
ζ.</description><subject>Applied physics</subject><subject>Copper</subject><subject>Low cycle fatigue</subject><subject>Molecular dynamics</subject><subject>Nucleation</subject><subject>Roughening</subject><subject>Specific surface</subject><subject>Strain rate</subject><subject>Superelasticity</subject><subject>Surface area</subject><subject>X-ray scattering</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgCq6rB_9BwJNCdZK0aXuUxS9Y8LL3EJPJ2qUmNWmV_fdGdtGD4GEYGJ6ZgZeQcwbXDKS4qa6B8aaqywMyY9C0RV1VcEhmAJwVTVu3x-QkpQ0AY41oZ2S9ekXah8_CbE3fGer02K0npBHTEHxCqr2l3ZioxQG9RW-QBkfTgKZz2acpOp1nOqKmLkQaMisM9j312ochxDAluphOyZHTfcKzfZ-T1f3davFYLJ8fnha3y8IIyccCS_4CuZoasHSaW16CqIWVvGk016x0puWlsFY2UpvWgmBOVwYlcCmMFHNysTs7xPA-YRrVJkzR54-K13UpRAt5fU4ud8rEkFJEp4bYvem4VQzUd4yqUvsYs73a2WS6MYcT_A_-CPEXqsG6__Dfy1-ya4CZ</recordid><startdate>20230214</startdate><enddate>20230214</enddate><creator>Bi, W. B.</creator><creator>Wang, Y. F.</creator><creator>Zhang, X. M.</creator><creator>Deng, L.</creator><creator>Tang, J. F.</creator><creator>Zhao, F.</creator><creator>Wang, L.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4866-3527</orcidid><orcidid>https://orcid.org/0000-0001-5920-6140</orcidid><orcidid>https://orcid.org/0000-0001-7260-7379</orcidid><orcidid>https://orcid.org/0000-0002-0733-7410</orcidid><orcidid>https://orcid.org/0000-0003-4484-9260</orcidid><orcidid>https://orcid.org/0000-0003-0986-1213</orcidid></search><sort><creationdate>20230214</creationdate><title>The low-cyclic fatigue response and its dependence of specific surface area for open-cell nanoporous Cu</title><author>Bi, W. B. ; Wang, Y. F. ; Zhang, X. M. ; Deng, L. ; Tang, J. F. ; Zhao, F. ; Wang, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-e42b042b870e4fa2d240373d6288a2a14fc9243dd686ac9d031fa5ce60263c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Copper</topic><topic>Low cycle fatigue</topic><topic>Molecular dynamics</topic><topic>Nucleation</topic><topic>Roughening</topic><topic>Specific surface</topic><topic>Strain rate</topic><topic>Superelasticity</topic><topic>Surface area</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bi, W. B.</creatorcontrib><creatorcontrib>Wang, Y. F.</creatorcontrib><creatorcontrib>Zhang, X. M.</creatorcontrib><creatorcontrib>Deng, L.</creatorcontrib><creatorcontrib>Tang, J. F.</creatorcontrib><creatorcontrib>Zhao, F.</creatorcontrib><creatorcontrib>Wang, L.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bi, W. B.</au><au>Wang, Y. F.</au><au>Zhang, X. M.</au><au>Deng, L.</au><au>Tang, J. F.</au><au>Zhao, F.</au><au>Wang, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The low-cyclic fatigue response and its dependence of specific surface area for open-cell nanoporous Cu</atitle><jtitle>Journal of applied physics</jtitle><date>2023-02-14</date><risdate>2023</risdate><volume>133</volume><issue>6</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>We systematically study the low cycle fatigue behavior and its dependence of specific surface area (
ζ) for nanoporous copper (NPC) under ultrahigh strain rate (
γ
˙
≈
10
9 s
−
1) cyclic shear loading by conducting large-scale molecular dynamic simulation and small-angle x-ray scattering analysis. With an increase in
ζ, NPC undergoes a transition from the first excellent anti-fatigue property (
ζ
<
1.24
nm
−
1) to the subsequent easy-to-fatigue capacity (
ζ
≥
1.24
nm
−
1). Two different mechanisms are governing fatigue: (i) smooth nucleation and propagation of dislocations for the former and (ii) nanopore compaction/coalescence for the latter by prohibiting the activities of dislocations. For NPC with
ζ
=
0.42
nm
−
1, fatigue contributes to a surprising superelasticity, prompted by the entanglements and reversed disentanglements of longer dislocations. Surface reconstruction contributes to the fatigue tolerance of NPC by facilitating local surface roughening and the emission of dislocation slips, and it becomes more pronounced with decreasing
ζ.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0128574</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4866-3527</orcidid><orcidid>https://orcid.org/0000-0001-5920-6140</orcidid><orcidid>https://orcid.org/0000-0001-7260-7379</orcidid><orcidid>https://orcid.org/0000-0002-0733-7410</orcidid><orcidid>https://orcid.org/0000-0003-4484-9260</orcidid><orcidid>https://orcid.org/0000-0003-0986-1213</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2023-02, Vol.133 (6) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0128574 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Copper Low cycle fatigue Molecular dynamics Nucleation Roughening Specific surface Strain rate Superelasticity Surface area X-ray scattering |
title | The low-cyclic fatigue response and its dependence of specific surface area for open-cell nanoporous Cu |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A17%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20low-cyclic%20fatigue%20response%20and%20its%20dependence%20of%20specific%20surface%20area%20for%20open-cell%20nanoporous%20Cu&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Bi,%20W.%20B.&rft.date=2023-02-14&rft.volume=133&rft.issue=6&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0128574&rft_dat=%3Cproquest_scita%3E2774339024%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774339024&rft_id=info:pmid/&rfr_iscdi=true |