The low-cyclic fatigue response and its dependence of specific surface area for open-cell nanoporous Cu

We systematically study the low cycle fatigue behavior and its dependence of specific surface area ( ζ) for nanoporous copper (NPC) under ultrahigh strain rate ( γ ˙ ≈ 10 9 s − 1) cyclic shear loading by conducting large-scale molecular dynamic simulation and small-angle x-ray scattering analysis. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2023-02, Vol.133 (6)
Hauptverfasser: Bi, W. B., Wang, Y. F., Zhang, X. M., Deng, L., Tang, J. F., Zhao, F., Wang, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Journal of applied physics
container_volume 133
creator Bi, W. B.
Wang, Y. F.
Zhang, X. M.
Deng, L.
Tang, J. F.
Zhao, F.
Wang, L.
description We systematically study the low cycle fatigue behavior and its dependence of specific surface area ( ζ) for nanoporous copper (NPC) under ultrahigh strain rate ( γ ˙ ≈ 10 9 s − 1) cyclic shear loading by conducting large-scale molecular dynamic simulation and small-angle x-ray scattering analysis. With an increase in ζ, NPC undergoes a transition from the first excellent anti-fatigue property ( ζ < 1.24 nm − 1) to the subsequent easy-to-fatigue capacity ( ζ ≥ 1.24 nm − 1). Two different mechanisms are governing fatigue: (i) smooth nucleation and propagation of dislocations for the former and (ii) nanopore compaction/coalescence for the latter by prohibiting the activities of dislocations. For NPC with ζ = 0.42 nm − 1, fatigue contributes to a surprising superelasticity, prompted by the entanglements and reversed disentanglements of longer dislocations. Surface reconstruction contributes to the fatigue tolerance of NPC by facilitating local surface roughening and the emission of dislocation slips, and it becomes more pronounced with decreasing ζ.
doi_str_mv 10.1063/5.0128574
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0128574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2774339024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-e42b042b870e4fa2d240373d6288a2a14fc9243dd686ac9d031fa5ce60263c63</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgCq6rB_9BwJNCdZK0aXuUxS9Y8LL3EJPJ2qUmNWmV_fdGdtGD4GEYGJ6ZgZeQcwbXDKS4qa6B8aaqywMyY9C0RV1VcEhmAJwVTVu3x-QkpQ0AY41oZ2S9ekXah8_CbE3fGer02K0npBHTEHxCqr2l3ZioxQG9RW-QBkfTgKZz2acpOp1nOqKmLkQaMisM9j312ochxDAluphOyZHTfcKzfZ-T1f3davFYLJ8fnha3y8IIyccCS_4CuZoasHSaW16CqIWVvGk016x0puWlsFY2UpvWgmBOVwYlcCmMFHNysTs7xPA-YRrVJkzR54-K13UpRAt5fU4ud8rEkFJEp4bYvem4VQzUd4yqUvsYs73a2WS6MYcT_A_-CPEXqsG6__Dfy1-ya4CZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774339024</pqid></control><display><type>article</type><title>The low-cyclic fatigue response and its dependence of specific surface area for open-cell nanoporous Cu</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Bi, W. B. ; Wang, Y. F. ; Zhang, X. M. ; Deng, L. ; Tang, J. F. ; Zhao, F. ; Wang, L.</creator><creatorcontrib>Bi, W. B. ; Wang, Y. F. ; Zhang, X. M. ; Deng, L. ; Tang, J. F. ; Zhao, F. ; Wang, L.</creatorcontrib><description>We systematically study the low cycle fatigue behavior and its dependence of specific surface area ( ζ) for nanoporous copper (NPC) under ultrahigh strain rate ( γ ˙ ≈ 10 9 s − 1) cyclic shear loading by conducting large-scale molecular dynamic simulation and small-angle x-ray scattering analysis. With an increase in ζ, NPC undergoes a transition from the first excellent anti-fatigue property ( ζ &lt; 1.24 nm − 1) to the subsequent easy-to-fatigue capacity ( ζ ≥ 1.24 nm − 1). Two different mechanisms are governing fatigue: (i) smooth nucleation and propagation of dislocations for the former and (ii) nanopore compaction/coalescence for the latter by prohibiting the activities of dislocations. For NPC with ζ = 0.42 nm − 1, fatigue contributes to a surprising superelasticity, prompted by the entanglements and reversed disentanglements of longer dislocations. Surface reconstruction contributes to the fatigue tolerance of NPC by facilitating local surface roughening and the emission of dislocation slips, and it becomes more pronounced with decreasing ζ.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0128574</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Copper ; Low cycle fatigue ; Molecular dynamics ; Nucleation ; Roughening ; Specific surface ; Strain rate ; Superelasticity ; Surface area ; X-ray scattering</subject><ispartof>Journal of applied physics, 2023-02, Vol.133 (6)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-e42b042b870e4fa2d240373d6288a2a14fc9243dd686ac9d031fa5ce60263c63</citedby><cites>FETCH-LOGICAL-c362t-e42b042b870e4fa2d240373d6288a2a14fc9243dd686ac9d031fa5ce60263c63</cites><orcidid>0000-0003-4866-3527 ; 0000-0001-5920-6140 ; 0000-0001-7260-7379 ; 0000-0002-0733-7410 ; 0000-0003-4484-9260 ; 0000-0003-0986-1213</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0128574$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4511,27923,27924,76255</link.rule.ids></links><search><creatorcontrib>Bi, W. B.</creatorcontrib><creatorcontrib>Wang, Y. F.</creatorcontrib><creatorcontrib>Zhang, X. M.</creatorcontrib><creatorcontrib>Deng, L.</creatorcontrib><creatorcontrib>Tang, J. F.</creatorcontrib><creatorcontrib>Zhao, F.</creatorcontrib><creatorcontrib>Wang, L.</creatorcontrib><title>The low-cyclic fatigue response and its dependence of specific surface area for open-cell nanoporous Cu</title><title>Journal of applied physics</title><description>We systematically study the low cycle fatigue behavior and its dependence of specific surface area ( ζ) for nanoporous copper (NPC) under ultrahigh strain rate ( γ ˙ ≈ 10 9 s − 1) cyclic shear loading by conducting large-scale molecular dynamic simulation and small-angle x-ray scattering analysis. With an increase in ζ, NPC undergoes a transition from the first excellent anti-fatigue property ( ζ &lt; 1.24 nm − 1) to the subsequent easy-to-fatigue capacity ( ζ ≥ 1.24 nm − 1). Two different mechanisms are governing fatigue: (i) smooth nucleation and propagation of dislocations for the former and (ii) nanopore compaction/coalescence for the latter by prohibiting the activities of dislocations. For NPC with ζ = 0.42 nm − 1, fatigue contributes to a surprising superelasticity, prompted by the entanglements and reversed disentanglements of longer dislocations. Surface reconstruction contributes to the fatigue tolerance of NPC by facilitating local surface roughening and the emission of dislocation slips, and it becomes more pronounced with decreasing ζ.</description><subject>Applied physics</subject><subject>Copper</subject><subject>Low cycle fatigue</subject><subject>Molecular dynamics</subject><subject>Nucleation</subject><subject>Roughening</subject><subject>Specific surface</subject><subject>Strain rate</subject><subject>Superelasticity</subject><subject>Surface area</subject><subject>X-ray scattering</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgCq6rB_9BwJNCdZK0aXuUxS9Y8LL3EJPJ2qUmNWmV_fdGdtGD4GEYGJ6ZgZeQcwbXDKS4qa6B8aaqywMyY9C0RV1VcEhmAJwVTVu3x-QkpQ0AY41oZ2S9ekXah8_CbE3fGer02K0npBHTEHxCqr2l3ZioxQG9RW-QBkfTgKZz2acpOp1nOqKmLkQaMisM9j312ochxDAluphOyZHTfcKzfZ-T1f3davFYLJ8fnha3y8IIyccCS_4CuZoasHSaW16CqIWVvGk016x0puWlsFY2UpvWgmBOVwYlcCmMFHNysTs7xPA-YRrVJkzR54-K13UpRAt5fU4ud8rEkFJEp4bYvem4VQzUd4yqUvsYs73a2WS6MYcT_A_-CPEXqsG6__Dfy1-ya4CZ</recordid><startdate>20230214</startdate><enddate>20230214</enddate><creator>Bi, W. B.</creator><creator>Wang, Y. F.</creator><creator>Zhang, X. M.</creator><creator>Deng, L.</creator><creator>Tang, J. F.</creator><creator>Zhao, F.</creator><creator>Wang, L.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4866-3527</orcidid><orcidid>https://orcid.org/0000-0001-5920-6140</orcidid><orcidid>https://orcid.org/0000-0001-7260-7379</orcidid><orcidid>https://orcid.org/0000-0002-0733-7410</orcidid><orcidid>https://orcid.org/0000-0003-4484-9260</orcidid><orcidid>https://orcid.org/0000-0003-0986-1213</orcidid></search><sort><creationdate>20230214</creationdate><title>The low-cyclic fatigue response and its dependence of specific surface area for open-cell nanoporous Cu</title><author>Bi, W. B. ; Wang, Y. F. ; Zhang, X. M. ; Deng, L. ; Tang, J. F. ; Zhao, F. ; Wang, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-e42b042b870e4fa2d240373d6288a2a14fc9243dd686ac9d031fa5ce60263c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Copper</topic><topic>Low cycle fatigue</topic><topic>Molecular dynamics</topic><topic>Nucleation</topic><topic>Roughening</topic><topic>Specific surface</topic><topic>Strain rate</topic><topic>Superelasticity</topic><topic>Surface area</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bi, W. B.</creatorcontrib><creatorcontrib>Wang, Y. F.</creatorcontrib><creatorcontrib>Zhang, X. M.</creatorcontrib><creatorcontrib>Deng, L.</creatorcontrib><creatorcontrib>Tang, J. F.</creatorcontrib><creatorcontrib>Zhao, F.</creatorcontrib><creatorcontrib>Wang, L.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bi, W. B.</au><au>Wang, Y. F.</au><au>Zhang, X. M.</au><au>Deng, L.</au><au>Tang, J. F.</au><au>Zhao, F.</au><au>Wang, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The low-cyclic fatigue response and its dependence of specific surface area for open-cell nanoporous Cu</atitle><jtitle>Journal of applied physics</jtitle><date>2023-02-14</date><risdate>2023</risdate><volume>133</volume><issue>6</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>We systematically study the low cycle fatigue behavior and its dependence of specific surface area ( ζ) for nanoporous copper (NPC) under ultrahigh strain rate ( γ ˙ ≈ 10 9 s − 1) cyclic shear loading by conducting large-scale molecular dynamic simulation and small-angle x-ray scattering analysis. With an increase in ζ, NPC undergoes a transition from the first excellent anti-fatigue property ( ζ &lt; 1.24 nm − 1) to the subsequent easy-to-fatigue capacity ( ζ ≥ 1.24 nm − 1). Two different mechanisms are governing fatigue: (i) smooth nucleation and propagation of dislocations for the former and (ii) nanopore compaction/coalescence for the latter by prohibiting the activities of dislocations. For NPC with ζ = 0.42 nm − 1, fatigue contributes to a surprising superelasticity, prompted by the entanglements and reversed disentanglements of longer dislocations. Surface reconstruction contributes to the fatigue tolerance of NPC by facilitating local surface roughening and the emission of dislocation slips, and it becomes more pronounced with decreasing ζ.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0128574</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4866-3527</orcidid><orcidid>https://orcid.org/0000-0001-5920-6140</orcidid><orcidid>https://orcid.org/0000-0001-7260-7379</orcidid><orcidid>https://orcid.org/0000-0002-0733-7410</orcidid><orcidid>https://orcid.org/0000-0003-4484-9260</orcidid><orcidid>https://orcid.org/0000-0003-0986-1213</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2023-02, Vol.133 (6)
issn 0021-8979
1089-7550
language eng
recordid cdi_scitation_primary_10_1063_5_0128574
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Copper
Low cycle fatigue
Molecular dynamics
Nucleation
Roughening
Specific surface
Strain rate
Superelasticity
Surface area
X-ray scattering
title The low-cyclic fatigue response and its dependence of specific surface area for open-cell nanoporous Cu
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A17%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20low-cyclic%20fatigue%20response%20and%20its%20dependence%20of%20specific%20surface%20area%20for%20open-cell%20nanoporous%20Cu&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Bi,%20W.%20B.&rft.date=2023-02-14&rft.volume=133&rft.issue=6&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0128574&rft_dat=%3Cproquest_scita%3E2774339024%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774339024&rft_id=info:pmid/&rfr_iscdi=true