Classification of Alzheimer’s disease using convolutional neural network based on brain MRI image
Memory disorders are often experienced by someone who has entered old age caused because nerve cells (neurons) in the part of the brain involved in cognitive function have been damaged and are no longer functioning properly. It is commonly called dementia or Alzheimer’s. Symptoms arising from Alzhei...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2714 |
creator | Wildah, Siti Khotimatul Agustiani, Sarifah Mustopa, Ali Sulaiman, Hamdun Rahmawati, Ami |
description | Memory disorders are often experienced by someone who has entered old age caused because nerve cells (neurons) in the part of the brain involved in cognitive function have been damaged and are no longer functioning properly. It is commonly called dementia or Alzheimer’s. Symptoms arising from Alzheimer’s disease such as memory impairment, personality changes, mood and behavior, and problems in daily interactions and activities due to confusion in digesting questions and messy memories. But until now there is no cure for the disease, therefore early detection is needed in order to prepare adequate treatment. The study aims to propose a method that can classify the development of Alzheimer’s disease by testing 6,400 brain MRI data. The method proposed in this study uses deep learning method with CNN algorithm and accuracy value obtained by 98.22%. |
doi_str_mv | 10.1063/5.0128556 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0128556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811319904</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-b93c36228436a88945287f08abb18244c0207c5a45bdbb9bdbf117922bfab8e43</originalsourceid><addsrcrecordid>eNp9kMtKAzEYhYMoWKsL3yDgTpia60yyLEVroSKIgruQzGRq6nQyJjMVXfkavp5P4vQC7tz8Z_Odw_kPAOcYjTBK6RUfIUwE5-kBGGDOcZKlOD0EA4QkSwijz8fgJMYlQkRmmRiAfFLpGF3pct06X0NfwnH1-WLdyoafr-8ICxetjhZ20dULmPt67atug-oK1rYLW2nffXiFpucK2IeYoF0N7x5m0K30wp6Co1JX0Z7tdQiebq4fJ7fJ_H46m4znSYNT0SZG0pymhAhGUy2EZJyIrERCG4MFYSxHBGU514ybwhjZnxLjTBJiSm2EZXQILna5TfBvnY2tWvou9EWjIgJjiqVEG-pyR8XctdunVRP6nuFDrX1QXO0HVE1R_gdjpDaL_xnoLy8ndAY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2811319904</pqid></control><display><type>conference_proceeding</type><title>Classification of Alzheimer’s disease using convolutional neural network based on brain MRI image</title><source>American Institute of Physics (AIP) Journals</source><creator>Wildah, Siti Khotimatul ; Agustiani, Sarifah ; Mustopa, Ali ; Sulaiman, Hamdun ; Rahmawati, Ami</creator><contributor>Junaidi, Agus ; Agustiani, Sarifah ; Arifin, Yoseph Tajul ; Baidawi, Taufik ; Dalis, Sopiyan ; Haryani ; Hastuti, Dwi Puji</contributor><creatorcontrib>Wildah, Siti Khotimatul ; Agustiani, Sarifah ; Mustopa, Ali ; Sulaiman, Hamdun ; Rahmawati, Ami ; Junaidi, Agus ; Agustiani, Sarifah ; Arifin, Yoseph Tajul ; Baidawi, Taufik ; Dalis, Sopiyan ; Haryani ; Hastuti, Dwi Puji</creatorcontrib><description>Memory disorders are often experienced by someone who has entered old age caused because nerve cells (neurons) in the part of the brain involved in cognitive function have been damaged and are no longer functioning properly. It is commonly called dementia or Alzheimer’s. Symptoms arising from Alzheimer’s disease such as memory impairment, personality changes, mood and behavior, and problems in daily interactions and activities due to confusion in digesting questions and messy memories. But until now there is no cure for the disease, therefore early detection is needed in order to prepare adequate treatment. The study aims to propose a method that can classify the development of Alzheimer’s disease by testing 6,400 brain MRI data. The method proposed in this study uses deep learning method with CNN algorithm and accuracy value obtained by 98.22%.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0128556</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Artificial neural networks ; Brain damage ; Machine learning ; Magnetic resonance imaging ; Signs and symptoms</subject><ispartof>AIP Conference Proceedings, 2023, Vol.2714 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0128556$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Junaidi, Agus</contributor><contributor>Agustiani, Sarifah</contributor><contributor>Arifin, Yoseph Tajul</contributor><contributor>Baidawi, Taufik</contributor><contributor>Dalis, Sopiyan</contributor><contributor>Haryani</contributor><contributor>Hastuti, Dwi Puji</contributor><creatorcontrib>Wildah, Siti Khotimatul</creatorcontrib><creatorcontrib>Agustiani, Sarifah</creatorcontrib><creatorcontrib>Mustopa, Ali</creatorcontrib><creatorcontrib>Sulaiman, Hamdun</creatorcontrib><creatorcontrib>Rahmawati, Ami</creatorcontrib><title>Classification of Alzheimer’s disease using convolutional neural network based on brain MRI image</title><title>AIP Conference Proceedings</title><description>Memory disorders are often experienced by someone who has entered old age caused because nerve cells (neurons) in the part of the brain involved in cognitive function have been damaged and are no longer functioning properly. It is commonly called dementia or Alzheimer’s. Symptoms arising from Alzheimer’s disease such as memory impairment, personality changes, mood and behavior, and problems in daily interactions and activities due to confusion in digesting questions and messy memories. But until now there is no cure for the disease, therefore early detection is needed in order to prepare adequate treatment. The study aims to propose a method that can classify the development of Alzheimer’s disease by testing 6,400 brain MRI data. The method proposed in this study uses deep learning method with CNN algorithm and accuracy value obtained by 98.22%.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Brain damage</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Signs and symptoms</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kMtKAzEYhYMoWKsL3yDgTpia60yyLEVroSKIgruQzGRq6nQyJjMVXfkavp5P4vQC7tz8Z_Odw_kPAOcYjTBK6RUfIUwE5-kBGGDOcZKlOD0EA4QkSwijz8fgJMYlQkRmmRiAfFLpGF3pct06X0NfwnH1-WLdyoafr-8ICxetjhZ20dULmPt67atug-oK1rYLW2nffXiFpucK2IeYoF0N7x5m0K30wp6Co1JX0Z7tdQiebq4fJ7fJ_H46m4znSYNT0SZG0pymhAhGUy2EZJyIrERCG4MFYSxHBGU514ybwhjZnxLjTBJiSm2EZXQILna5TfBvnY2tWvou9EWjIgJjiqVEG-pyR8XctdunVRP6nuFDrX1QXO0HVE1R_gdjpDaL_xnoLy8ndAY</recordid><startdate>20230509</startdate><enddate>20230509</enddate><creator>Wildah, Siti Khotimatul</creator><creator>Agustiani, Sarifah</creator><creator>Mustopa, Ali</creator><creator>Sulaiman, Hamdun</creator><creator>Rahmawati, Ami</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230509</creationdate><title>Classification of Alzheimer’s disease using convolutional neural network based on brain MRI image</title><author>Wildah, Siti Khotimatul ; Agustiani, Sarifah ; Mustopa, Ali ; Sulaiman, Hamdun ; Rahmawati, Ami</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-b93c36228436a88945287f08abb18244c0207c5a45bdbb9bdbf117922bfab8e43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Brain damage</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Signs and symptoms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wildah, Siti Khotimatul</creatorcontrib><creatorcontrib>Agustiani, Sarifah</creatorcontrib><creatorcontrib>Mustopa, Ali</creatorcontrib><creatorcontrib>Sulaiman, Hamdun</creatorcontrib><creatorcontrib>Rahmawati, Ami</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wildah, Siti Khotimatul</au><au>Agustiani, Sarifah</au><au>Mustopa, Ali</au><au>Sulaiman, Hamdun</au><au>Rahmawati, Ami</au><au>Junaidi, Agus</au><au>Agustiani, Sarifah</au><au>Arifin, Yoseph Tajul</au><au>Baidawi, Taufik</au><au>Dalis, Sopiyan</au><au>Haryani</au><au>Hastuti, Dwi Puji</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Classification of Alzheimer’s disease using convolutional neural network based on brain MRI image</atitle><btitle>AIP Conference Proceedings</btitle><date>2023-05-09</date><risdate>2023</risdate><volume>2714</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Memory disorders are often experienced by someone who has entered old age caused because nerve cells (neurons) in the part of the brain involved in cognitive function have been damaged and are no longer functioning properly. It is commonly called dementia or Alzheimer’s. Symptoms arising from Alzheimer’s disease such as memory impairment, personality changes, mood and behavior, and problems in daily interactions and activities due to confusion in digesting questions and messy memories. But until now there is no cure for the disease, therefore early detection is needed in order to prepare adequate treatment. The study aims to propose a method that can classify the development of Alzheimer’s disease by testing 6,400 brain MRI data. The method proposed in this study uses deep learning method with CNN algorithm and accuracy value obtained by 98.22%.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0128556</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2023, Vol.2714 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_scitation_primary_10_1063_5_0128556 |
source | American Institute of Physics (AIP) Journals |
subjects | Algorithms Artificial neural networks Brain damage Machine learning Magnetic resonance imaging Signs and symptoms |
title | Classification of Alzheimer’s disease using convolutional neural network based on brain MRI image |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A59%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Classification%20of%20Alzheimer%E2%80%99s%20disease%20using%20convolutional%20neural%20network%20based%20on%20brain%20MRI%20image&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Wildah,%20Siti%20Khotimatul&rft.date=2023-05-09&rft.volume=2714&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0128556&rft_dat=%3Cproquest_scita%3E2811319904%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811319904&rft_id=info:pmid/&rfr_iscdi=true |