Health protocol campaign tweet classification during the Covid-19 pandemic

Lots of information about health in social media today. Especially there is relatively a lot of negative information regarding the coverage of the current Covid-19 pandemic. Negative information has exacerbated the problem of the Covid-19 pandemic to become more complicated and has made the public p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Frieyadie, Amsury, Fachri, Saputra, Irwansyah, Suryani, Ita, Sagiyanto, Asriyani, Liliyana, Elyana, Instianti
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2714
creator Frieyadie
Amsury, Fachri
Saputra, Irwansyah
Suryani, Ita
Sagiyanto, Asriyani
Liliyana
Elyana, Instianti
description Lots of information about health in social media today. Especially there is relatively a lot of negative information regarding the coverage of the current Covid-19 pandemic. Negative information has exacerbated the problem of the Covid-19 pandemic to become more complicated and has made the public panic and anxious. Especially the economic problems among the community regarding the limitation of the distance to interact. This study takes people’s comments from Twitter regarding public sentiment regarding the Covid-19 pandemic, seeing how much support the Indonesian people have in campaigning for health protocols on Twitter social media using the Support Vector Machine (SVM) and Naïve Bayes methods. Based on the dataset taken from Twitter in the range of December 2020 to February 2021, the average results of Indonesian people’s tweets on Twitter are mostly included in the not-campaign class, meaning that there is still a lack of awareness of the Indonesian people to help campaign health protocols during the Covid-19 pandemic on the media social Twitter.
doi_str_mv 10.1063/5.0128481
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0128481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811319944</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-78974442ee1c5eda4a9b26a0a9fec8245d43b4de338cbdf8aca272632c80e7373</originalsourceid><addsrcrecordid>eNp9kMFKAzEURYMoWKsL_yDgTpial2QmyVKKWqXgRsFdeE0ybcp0Zpykin9vtQV3ru7mcO_hEnIJbAKsEjflhAHXUsMRGUFZQqEqqI7JiDEjCy7F2yk5S2nNGDdK6RF5mgVs8or2Q5c71zXU4abHuGxp_gwhU9dgSrGODnPsWuq3Q2yXNK8CnXYf0RdgaI-tD5vozslJjU0KF4cck9f7u5fprJg_PzxOb-dFD5XOhdJGSSl5CODK4FGiWfAKGZo6OM1l6aVYSB-E0G7ha40OueKV4E6zoIQSY3K17905v29DynbdbYd2N2m5BhBgjJQ76npPJRfzr7zth7jB4csCsz9f2dIevvoP_uiGP9D2vhbfTWNqEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2811319944</pqid></control><display><type>conference_proceeding</type><title>Health protocol campaign tweet classification during the Covid-19 pandemic</title><source>AIP Journals Complete</source><creator>Frieyadie ; Amsury, Fachri ; Saputra, Irwansyah ; Suryani, Ita ; Sagiyanto, Asriyani ; Liliyana ; Elyana, Instianti</creator><contributor>Junaidi, Agus ; Agustiani, Sarifah ; Arifin, Yoseph Tajul ; Baidawi, Taufik ; Dalis, Sopiyan ; Haryani ; Hastuti, Dwi Puji</contributor><creatorcontrib>Frieyadie ; Amsury, Fachri ; Saputra, Irwansyah ; Suryani, Ita ; Sagiyanto, Asriyani ; Liliyana ; Elyana, Instianti ; Junaidi, Agus ; Agustiani, Sarifah ; Arifin, Yoseph Tajul ; Baidawi, Taufik ; Dalis, Sopiyan ; Haryani ; Hastuti, Dwi Puji</creatorcontrib><description>Lots of information about health in social media today. Especially there is relatively a lot of negative information regarding the coverage of the current Covid-19 pandemic. Negative information has exacerbated the problem of the Covid-19 pandemic to become more complicated and has made the public panic and anxious. Especially the economic problems among the community regarding the limitation of the distance to interact. This study takes people’s comments from Twitter regarding public sentiment regarding the Covid-19 pandemic, seeing how much support the Indonesian people have in campaigning for health protocols on Twitter social media using the Support Vector Machine (SVM) and Naïve Bayes methods. Based on the dataset taken from Twitter in the range of December 2020 to February 2021, the average results of Indonesian people’s tweets on Twitter are mostly included in the not-campaign class, meaning that there is still a lack of awareness of the Indonesian people to help campaign health protocols during the Covid-19 pandemic on the media social Twitter.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0128481</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Coronaviruses ; COVID-19 ; Digital media ; Pandemics ; Social networks ; Support vector machines</subject><ispartof>AIP conference proceedings, 2023, Vol.2714 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0128481$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23911,23912,25120,27903,27904,76129</link.rule.ids></links><search><contributor>Junaidi, Agus</contributor><contributor>Agustiani, Sarifah</contributor><contributor>Arifin, Yoseph Tajul</contributor><contributor>Baidawi, Taufik</contributor><contributor>Dalis, Sopiyan</contributor><contributor>Haryani</contributor><contributor>Hastuti, Dwi Puji</contributor><creatorcontrib>Frieyadie</creatorcontrib><creatorcontrib>Amsury, Fachri</creatorcontrib><creatorcontrib>Saputra, Irwansyah</creatorcontrib><creatorcontrib>Suryani, Ita</creatorcontrib><creatorcontrib>Sagiyanto, Asriyani</creatorcontrib><creatorcontrib>Liliyana</creatorcontrib><creatorcontrib>Elyana, Instianti</creatorcontrib><title>Health protocol campaign tweet classification during the Covid-19 pandemic</title><title>AIP conference proceedings</title><description>Lots of information about health in social media today. Especially there is relatively a lot of negative information regarding the coverage of the current Covid-19 pandemic. Negative information has exacerbated the problem of the Covid-19 pandemic to become more complicated and has made the public panic and anxious. Especially the economic problems among the community regarding the limitation of the distance to interact. This study takes people’s comments from Twitter regarding public sentiment regarding the Covid-19 pandemic, seeing how much support the Indonesian people have in campaigning for health protocols on Twitter social media using the Support Vector Machine (SVM) and Naïve Bayes methods. Based on the dataset taken from Twitter in the range of December 2020 to February 2021, the average results of Indonesian people’s tweets on Twitter are mostly included in the not-campaign class, meaning that there is still a lack of awareness of the Indonesian people to help campaign health protocols during the Covid-19 pandemic on the media social Twitter.</description><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Digital media</subject><subject>Pandemics</subject><subject>Social networks</subject><subject>Support vector machines</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kMFKAzEURYMoWKsL_yDgTpial2QmyVKKWqXgRsFdeE0ybcp0Zpykin9vtQV3ru7mcO_hEnIJbAKsEjflhAHXUsMRGUFZQqEqqI7JiDEjCy7F2yk5S2nNGDdK6RF5mgVs8or2Q5c71zXU4abHuGxp_gwhU9dgSrGODnPsWuq3Q2yXNK8CnXYf0RdgaI-tD5vozslJjU0KF4cck9f7u5fprJg_PzxOb-dFD5XOhdJGSSl5CODK4FGiWfAKGZo6OM1l6aVYSB-E0G7ha40OueKV4E6zoIQSY3K17905v29DynbdbYd2N2m5BhBgjJQ76npPJRfzr7zth7jB4csCsz9f2dIevvoP_uiGP9D2vhbfTWNqEg</recordid><startdate>20230509</startdate><enddate>20230509</enddate><creator>Frieyadie</creator><creator>Amsury, Fachri</creator><creator>Saputra, Irwansyah</creator><creator>Suryani, Ita</creator><creator>Sagiyanto, Asriyani</creator><creator>Liliyana</creator><creator>Elyana, Instianti</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230509</creationdate><title>Health protocol campaign tweet classification during the Covid-19 pandemic</title><author>Frieyadie ; Amsury, Fachri ; Saputra, Irwansyah ; Suryani, Ita ; Sagiyanto, Asriyani ; Liliyana ; Elyana, Instianti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-78974442ee1c5eda4a9b26a0a9fec8245d43b4de338cbdf8aca272632c80e7373</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Digital media</topic><topic>Pandemics</topic><topic>Social networks</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frieyadie</creatorcontrib><creatorcontrib>Amsury, Fachri</creatorcontrib><creatorcontrib>Saputra, Irwansyah</creatorcontrib><creatorcontrib>Suryani, Ita</creatorcontrib><creatorcontrib>Sagiyanto, Asriyani</creatorcontrib><creatorcontrib>Liliyana</creatorcontrib><creatorcontrib>Elyana, Instianti</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frieyadie</au><au>Amsury, Fachri</au><au>Saputra, Irwansyah</au><au>Suryani, Ita</au><au>Sagiyanto, Asriyani</au><au>Liliyana</au><au>Elyana, Instianti</au><au>Junaidi, Agus</au><au>Agustiani, Sarifah</au><au>Arifin, Yoseph Tajul</au><au>Baidawi, Taufik</au><au>Dalis, Sopiyan</au><au>Haryani</au><au>Hastuti, Dwi Puji</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Health protocol campaign tweet classification during the Covid-19 pandemic</atitle><btitle>AIP conference proceedings</btitle><date>2023-05-09</date><risdate>2023</risdate><volume>2714</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Lots of information about health in social media today. Especially there is relatively a lot of negative information regarding the coverage of the current Covid-19 pandemic. Negative information has exacerbated the problem of the Covid-19 pandemic to become more complicated and has made the public panic and anxious. Especially the economic problems among the community regarding the limitation of the distance to interact. This study takes people’s comments from Twitter regarding public sentiment regarding the Covid-19 pandemic, seeing how much support the Indonesian people have in campaigning for health protocols on Twitter social media using the Support Vector Machine (SVM) and Naïve Bayes methods. Based on the dataset taken from Twitter in the range of December 2020 to February 2021, the average results of Indonesian people’s tweets on Twitter are mostly included in the not-campaign class, meaning that there is still a lack of awareness of the Indonesian people to help campaign health protocols during the Covid-19 pandemic on the media social Twitter.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0128481</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2714 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_scitation_primary_10_1063_5_0128481
source AIP Journals Complete
subjects Coronaviruses
COVID-19
Digital media
Pandemics
Social networks
Support vector machines
title Health protocol campaign tweet classification during the Covid-19 pandemic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A09%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Health%20protocol%20campaign%20tweet%20classification%20during%20the%20Covid-19%20pandemic&rft.btitle=AIP%20conference%20proceedings&rft.au=Frieyadie&rft.date=2023-05-09&rft.volume=2714&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0128481&rft_dat=%3Cproquest_scita%3E2811319944%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811319944&rft_id=info:pmid/&rfr_iscdi=true